Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash

25 2 月, 2020

Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash

Recently, PhD student Miss Wen-jie Cong supervised by Prof. Zhen Fang published a research article in Applied Energy about biodiesel production from high acid (AV) waste oils with a solid base derived from spent bleaching clay (SBC).

Biodiesel was directly one-step produced from waste oils without pretreatment catalyzed by a solid base alkalized from SBC ash. Optimized conditions were obtained with 99.1% biodiesel yield from soybean oil with an orthogonal design. The base catalyst was stable within 8 cycles (> 95% biodiesel yield) and resistant to saponification (AV = 9.7 mg KOH/g, 96.5% biodiesel yield). The base was characterized with XRD, EDX-mapping, FT-IR, XRF and TPD, and it had similar strong basicity to Na2SiO3 (0.21 vs. 0.22 mmol/g for Na2SiO3) with active sites of Na2O and CH3ONa evolved from Na2SiO3 and NaAlSiO4 by reactions of NaOH with oxides (e.g., SiO2, Al2O3) in SBC ash. Furthermore, the base was magnetized with magnetism of 6.86 emu/g by carbonizing residual oil in SBC as carbon support and reductant (of Fe2O3 to magnetic Fe3O4 particles). It catalyzed soybean oil to produce biodiesel with 99.2% yield and blended oil (AV = 5.9) to biodiesel with 91.9% yield without any saponification. The catalyst was magnetically separated and reused for 3 cycles with 87% yield. The non-magnetic base could also efficiently catalyze actual SBC oil for the production of biodiesel with 95% yield at AV of 10. This work realized the full use of inorganics in SBC, and its oil for direct biodiesel production at a low temperature (i.e., 65 vs. 120 oC with sulfuric acid process) without wastes produced and results can easily find practical applications for waste oils.

Related results were accepted in Applied Energy:

WJ Cong, YT Wang, H Li, Zhen Fang*, J Sun, HT Liu, JT Liu, S Tang, L Xu. Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash. Applied Energy, 264,114735 (2020), https://doi.org/10.1016/j.apenergy.2020.114735.

Solid base synthesized from SBC ash for biodiesel production from waste oils with 8 cycles and anti-saponification. It was further magnetized for easy separation.(以废白土为原料合成固体碱,催化废弃油脂制备生物柴油。该催化剂可循环使用8次且可抗皂化,并被进一步磁化为磁性固体催化剂以便于分离。).

以废白土为原料合成固体碱并用于直接催化废弃油脂制备生物柴油

最近,博士生丛文杰(女)在方老师的指导下,在国际学术期刊Applied Energy(IF8.4,Q1)发表以废白土为原料合成固体碱以制备生物柴油的研究性论文。

通过NaOH碱化废白土灰合成固体碱,直接催化废弃油脂制备生物柴油。首先,以大豆油为原料,通过正交试验确定了最优反应条件(醇油比11:1,催化剂量8 wt%,温度65℃,反应3 h),该条件下生物柴油得率为99.1%,该固体碱8次循环后产率仍高于95%。该固体碱可抗皂化,油脂酸值为9.7 mg KOH/g 时生物柴油产率可达96.5%,催化酸值为10的废白土油可得生物柴油产率为95%。此外,进一步通过碳化废白土中的残油作为碳载体和还原剂(将氧化铁转化为四氧化三铁),磁化为磁性固体碱催化剂(6.86 emu/g)。该磁性固体碱催化大豆油制备生物柴油产率为99.2%,经磁性分离后可重复使用3次(生物柴油产率为87%),催化酸值5.9 mg KOH/g的油脂得生物柴油产率为91.9%且未见皂化。本研究充分利用废白土中的无机物(如二氧化硅、氧化铝等),并实现低温下碱催化一步法转化废白土油为生物柴油。整个生产工艺无废弃物生成,并易于应用于工业生产生物柴油。详情可见:

WJ Cong, YT Wang, H Li, Zhen Fang*, J Sun, HT Liu, JT Liu, S Tang, L Xu. Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash. Applied Energy, 264,114735 (2020), https://doi.org/10.1016/j.apenergy.2020.114735.

Springer book “Production of Biofuels and Chemicals with Pyrolysis”

7 1 月, 2020

Springer book “Production of Biofuels and Chemicals with Pyrolysis”
Springer is going to publish (in revision, due early 2020) a book entitled “Production of Biofuels and Chemicals with Pyrolysis” edited by Profs. Zhen Fang, RL Smith Jr. and Dr. LJ Xu, Springer, Hardcover ISBN 978-981-15-2731-9, 560 pages, 2020 (https://www.springer.com/gp/book/9789811527319#aboutBook).

Pyrolysis is widely applicable to the valorization of biomass. This book presents a collection of studies on state-of-art techniques developed specifically for conversion of biomass to chemical products by pyrolysis with an emphasis on the fundamentals and mechanisms for producing bio-oils, chemicals, gases and biochar via pyrolysis processes. Key reaction parameters and reactor configurations are outlined for converting many types of biomass into chemical products. All chapters were contributed by respected global experts in their field to provide readers with a broad range of perspectives on cutting-edge applications. The book is an ideal reference guide for academic researchers and industrial engineers in the fields of natural renewable materials, biorefinery of lignocellulose, biofuels and environmental engineering. It can also be used as a comprehensive reference source for university students in chemical engineering, material science and environmental engineering.

This book contains 13 chapters contributed by leading experts in the field. The text is arranged into five key areas:
Part 1. Fundamentals of Pyrolysis
Part 2. Production of Liquid Biofuels by Pyrolysis & Catalytic Pyrolysis
Part 3. Liquid Biofuels Production by Microwave Pyrolysis
Part 4. Producing Bio-Chemicals by Pyrolysis
Part 5. Producing Gas Fuel and Pyrolysis Modeling

The text should be of interest to professionals in academia and industry who are working in the fields of natural renewable materials, biorefinery of lignocellulose, biofuels, agricultural engineering and environmental engineering. It can also be used as comprehensive references for university students with backgrounds of chemical engineering, material science and environmental engineering.

This book is the tenth book of the series entitled, “Biofuels and Biorefineries”, (highly-downloaded books with 135 k chapter downloads and 4 books among “top 25% springer e-books”, Prof. Zhen Fang is serving as Editor-in-Chief), and the seventeenth English book edited/authored by Prof. Zhen Fang since 2009.
Biofuels and Biorefineries:

http://www.springer.com/series/11687?detailsPage=titles

斯普林格新书《热解生产生物燃料和化学品》即将出版

由方真老师、日本东北大学RL Smith Jr.教授和徐禄江博士主编的新书《热解生产生物燃料和化学品》,最近将由斯普林格公司出版发行(in revision, due early 2020,精装,560页, ISBN978-981-15-2731-9, 2020)(https://www.springer.com/gp/book/9789811527319#aboutBook)。

热解广泛应用于生物质的高值化。这本书展示了一个关于最新技术的研究的集合,特别是生物质通过热解转化为化学产品,重点介绍了通过热解过程生产生物油、化学品、气体和生物炭的基本原理和机理。概述了将多种生物质转化为化工产品的关键反应参数和反应器结构。本书包含13个章节,每个章节由全球范围内挑选的该领域的专家或教授编写并通过严格的外审,为读者提供前沿应用的广泛视角。

本书分为五个主要部分:
第1部分: 热解原理
第2部分: 通过热解和催化热解生产液体生物燃料
第3部分: 微波热解生产液体生物燃料
第4部分: 通过热解生产生物化学品
第5部分: 生产气体燃料和热解建模

这本书,为学术界研究人员和工业工程师在自然可再生材料、生物精练的木质纤维素、生物燃料、农业工程和环境工程领域提供了一个理想的参考指南。它对化工、材料科学、环境工程等专业的大学生具有广泛的参考价值。

该书是斯普林格系列丛书“生物燃料和生物炼制- Biofuels and Biorefineries”(方真老师担任该丛书总编辑,章节下载量(电子销售量)近13.5万次,他编著其中4 部专著已进入Springer高下载书籍前25%。)出版的第十本专著,也是方真老师自2009年以来,编著出版的第十七部英语专著。

生物燃料和生物炼制丛书:
http://www.springer.com/series/11687?detailsPage=titles.

Cycloamination strategies for renewable N-heterocycles

17 12 月, 2019

Cycloamination strategies for renewable N-heterocycles

Recently, Dr. H Li and Prof. Zhen Fang, collaborated with Prof. RL Smith Jr. (Tohoku University, Japan), published a review (Spotlight) paper in Green Chemistry about the production of renewable N-heterocycles.

Biomass resources have infinite possibilities for introducing nitrogen, sulfur, or phosphorus heteroatoms into their structures by virtue of controllable carbon-heteroatom bond formation. In this review, cycloamination approaches for thermal (catalyst-free) and catalytic transformation of biomass feedstocks into N-heterocyclic molecules including mechanistic pathways are analyzed. Bottom-up (small molecule substrates) and top-down (large molecule substrates) are considered. Sustainable routes for synthesis of five-membered (pyrroles, pyrrolidones, pyrazoles, imidazoles), six-membered (pyridines, pyrazines), fused (indoles, benzimidazoles), and other relevant azaheterocycles are critically assessed. Production of biomass-derived six-, seven-, and eight-membered as well as fused N-heterocyclic compounds with present approaches have relatively low selectivities. Attention to methods for forming analogous sulfur or phosphorus heteroatom compounds from biomass resources using either bottom-up or top-down strategies appear to have been greatly overlooked. Synthetic auxiliaries (heating modes, nitrogen sources) that enhance reaction efficiency and tunability of N-heterocyclic ring size/type are considered and plausible reaction mechanisms for pivotal pathways are developed.

Efficient amination strategies for synthesis of N-heterocycles from functional molecules (bottom-up) or from biomass (top-down) via sustainable C-N/C-X bond chemistry (从功能分子(自下而上)或从生物质(自上而下)通过可持续碳- n /C-X键化学合成n杂环的高效胺化策略)

Related results were accepted in Green Chemistry:

H Li*, HX Guo, Zhen Fang*, TM Aida, RL Smith Jr*, Cycloamination Strategies for Renewable N-heterocycles, Green Chemistry, https://doi.org/10.1039/C9GC03655E , 22, 582-611, 2020 (Spotlight Paper, Review).

————————————

李虎博士在国际学术期刊Green Chemistry发表学术论文

可再生氮杂环的环胺化策略

最近,国际学术期刊Green Chemistry(影响因子9.4, Q1,第一署名单位为南京农业大学,第一作者为李虎博士,通讯作者为李虎博士,方真教授和日本东北大学RL Smith Jr教授)以Spotlight paper形式,发表了生物质生产可再生氮杂环化合物的综述。

生物质资源通过可控的碳-杂原子成键将氮、硫、磷等杂原子引入其结构中具有无限的可能性。本文综述了近年来生物质原料热(无催化)和催化转化为n -杂环分子的环胺化方法及其机理。考虑自底向上(小分子底物)和自顶向下(大分子底物)。五元(吡咯、吡咯烷酮、吡唑、咪唑)、六元(吡啶)的合成路线。用现有方法生产生物衍生的六元、七元、八元以及融合的n杂环化合物的选择性较低。利用自底向上或自顶向下的战略从生物量资源中形成类似硫或磷杂原子化合物的方法似乎受到了极大的忽视。考虑了提高反应效率和n杂环尺寸/类型可调性的合成助剂(加热方式、氮源),并建立了关键途径的合理反应机制。

详情可见:

H Li*, HX Guo, Zhen Fang*, TM Aida, RL Smith Jr*, Cycloamination Strategies for Renewable N-heterocycles, Green Chemistry (IF 9.4), https://doi.org/10.1039/C9GC03655E 22, 582-611, 2020 (Spotlight Paper, Review).

Prof. Charles Xu from University of Western Ontario visited our Lab

17 11 月, 2019

Prof. Charles Xu from University of Western Ontario visited our Lab

On November 14, 2019, as invited by Prof. Zhen Fang, Prof. Charles Chunbao Xu from University of Western Ontario (UWO) in Canada and Dr. Yongsheng Zhang from Zhengzhou University visited our College of Engineering for the academic exchanges and research collaborations. Prof. Xu has a close collaboration with Prof. Fang for a long history in research and student exchanges.

In the afternoon, Prof. Xu gave a lecture to teachers and students on “Conversion of agricultural biomass into bio-based chemicals and materials”. He briefly introduced about UWO and its main research directions, including the works on biomass resources, sludge into bioenergy, biofuels and bio-based chemicals, and presented his Lab’s main research topics and results in detail, particularly showed us how to produce economic viable materials and chemicals besides biofuels from biomass wastes. The academic lecture brings inspiration to the future development and directions of renewable energy and biomass resources utilizations.

After the presentation, Prof. Xu and Dr. Zhang visited our laboratory guided by Prof. Fang. Prof. Fang gave a detailed introduction about the main research directions, research progress and various instruments of the laboratory.

Professor Chunbao Xu, fellow of the Canadian Academy of Engineering and a tenured professor of the Department of Chemical Engineering at UWO in Canada, is a world-renown expert in the field of biomass refining. He is the Co-editor-in-chief of the International Journal of Chemical Reaction Engineering (IJCRE, an SCI Journal). In recent years, he has published nearly 200 papers in International academic journals with 7,700 cites and H index of 47.

加拿大工程院院士徐春保教授一行来访我院

2019年11月14日,应方真教授邀请,加拿大西安大略大学徐春宝教授和郑州大学张永生博士一行来访我院,进行学术交流与科研合作。徐教授与方教授在科研和学生交流方面有着长期的密切合作。

下午,徐春保教授为我院师生作了“Conversion of agricultural biomass into bio-based chemicals and materials”的专题报告,详细介绍了加拿大西安大略大学历史和主要研究方向,包括生物质、有机固废和污泥转化为生物能源、生物燃料和生物基化学品等方面的研究。特别向我们展示了如何利用农业生物质废弃物生产生物燃料以外的经济可行的材料和化学制品。本次学术讲座对可再生能源和生物质资源利用的未来发展和方向具有启发意义。

报告结束后,徐春保教授一行在方真教授的带领下参观了我们实验室,方老师为其详细介绍了目前实验室的主要研究方向、研究进展及实验室的各种仪器设备。

徐春保教授,现为加拿大工程院院士、加拿大西安大略大学化工系终身教授,生物质精炼领域的世界著名专家。担任SCI期刊化学反应工程国际期刊(IJCRE)的共同总编辑。近年来在学术期刊上发表论文近200篇,被引用7700余次,H因子47。

Prof. Sarani Zakaria from UKM (Malaysia) visited our Lab

23 10 月, 2019

Prof. Sarani Zakaria from UKM (Malaysia) visited our Lab

As invited by Prof. Zhen Fang, in the morning of October 5th, 2019, Prof Sarani Zakaria from Universiti Kebangsaan Malaysia (UKM; Bangi, Malaysia), visited our Lab. Prof. Fang gave a detailed introduction of the current research areas, research progress, and how to use the related instruments and equipment in our lab.

Prof. Z Fang has a long-term cooperative relationship with Prof. Zakaria’s group at UKM and co-supervised 4 PhD students (Drs. Fei Ling Pua, Siew Xian Chin, Suet Pin Fan, Umar Adli Bin Amran) and co-authored some research articles since 2011. He hopes that this visit will further enhance friendship and deepen cooperation in research, promote the development of international student exchanges and other activities, particularly jointly apply for research grants from different sources such as “One Belt and One Road”.

国立马来西亚大学Zakaria教授访问生物能源组

2019年10月05日上午,国立马来西亚大学Sarani Zakaria教授应方老师邀请来南京农业大学生物能源组访问和交流。Sarani Zakaria教授一行在方真教授带领下参观了生物能源实验室,方老师为其详细地介绍了目前实验室相关研究方向、研究进展以及相关仪器和设备的使用方法和功能。

方教授与Zakaria教授在马来西亚国立大学的团队有着长期的合作关系,自2011年以来,两人共同培养了4名马来西亚博士生(Fei Ling Pua潘慧琳小姐, Siew Xian Chin陈秀娴小姐, Suet Pin Fan范雪彬小姐, Umar Adli Bin Amran先生),同时也合作撰写了一些研究论文。方老师和Zakaria教授希望通过此次访问,能够进一步增进两团队的友谊,促进国际学生交流等活动的发展;深化科研合作,特别是联合申请不同渠道的科研资助,例如国家积极响应的“一带一路”建设工程项目。