Archive for 4 月, 2024

催化热解制备4-乙烯基苯酚:Insight into the synergistic influence of nitrogen-doped biochar and NH3 on selective production of 4-vinyl phenol from biomass catalytic pyrolysis by coupling catalyst in-situ regeneration

星期二, 30 4 月, 2024

Insight into the synergistic influence of nitrogen-doped biochar and NH3 on selective production of 4-vinyl phenol from biomass catalytic pyrolysis by coupling catalyst in-situ regeneration

 

Recently, Master student Miss Wen-juan Guo supervised by Dr. Wei Chen and Prof. Zhen Fang published a research article entitled “Insight into the synergistic influence of nitrogen-doped biochar and NH3 on selective production of 4-vinyl phenol from biomass catalytic pyrolysis by coupling catalyst in-situ regeneration” in Industrial Crops and Products.

A new catalytic pyrolysis system of biomass was proposed. Nitrogen-doped biochar catalyst was used to pyrolyze bamboo to produce valuable 4-vinyl phenol (2500 yuan/kg) under NH3 atmosphere, and in-situ regeneration of the catalyst was realized. NH3 and nitrogen-doped biochar catalyst could significantly increase bio-oil yield (up to 68 wt.%) and phenols content (80%). The selectivity and absolute yield of 4-vinyl phenol were up to 28% and 5.85 wt.%, respectively. N/O-containing groups in the catalyst and free radicals from NH3 promoted the break of ester bonds and β-O-4 bonds, and converted phenols intermediates to 4-vinyl phenol. Meanwhile, NH3 also acted as activator and nitrogen dopant, which realized the in-situ regeneration of the catalyst. The regeneration rate of nitrogen content and SBET of the catalyst was up to 84.5%-150% and 72.9%-85.4%, respectively. In addition, the nitrogen-doped biochar catalyst also showed good stability and reusability, and the yield of 4-vinyl phenol was still as high as 5.85-6.05 wt.% after repeated use of BC10 catalyst for 3 times. This was also the first time to explore the formation path of 4-vinyl phenol and the in-situ regeneration mechanism of the catalyst, based on the synergistic effect of NH3 and the nitrogen-doped biochar catalyst. It proposed a new direction for the high value utilization of biomass resources.

Related results were accepted in Industrial Crops and Products:

W Guo, Y Wang, W Chen*, GX  Xu, G Zhu, GXie, LXu, Zhen Fang, Q Zhang, H Yang. Insight into the synergistic influence of nitrogen-doped biochar and NH3 on selective production of 4-vinyl phenol from biomass catalytic pyrolysis by coupling catalyst in-situ regeneration. Industrial Crops and Products (IF = 5.9) (2024) 214, 118520. https://doi.org/10.1016/j.indcrop.2024.118520

Selective production of 4-vinyl phenol from biomass catalytic pyrolysis by coupling catalyst in-situ regeneration原位再生掺氮生物炭催化剂催化热解生产4-乙烯基苯酚


NH3气氛下基于掺氮生物炭催化剂原位再生的生物质催化热解选择性生产4-乙烯基苯酚

最近,硕士生郭文娟在陈伟副教授和方真教授的指导下,在国际学术期刊Industrial Crops and Products (Q1, IF = 5.9) 发表了一篇题为“Insight into the synergistic influence of nitrogen-doped biochar and NH3 on selective production of 4-vinyl phenol from biomass catalytic pyrolysis by coupling catalyst in-situ regeneration”的研究性论文。

该研究提出了一种新的生物质催化热解体系,在NH3气氛下采用掺氮生物炭催化剂对竹子进行热解,制备得到了高价值的4-乙烯基苯酚(2500元/kg),与此同时实现了催化剂的原位再生。NH3和掺氮生物炭催化剂可显著提高生物油收率(68 wt.%)和酚类化合物含量(80%)。4-乙烯基苯酚的选择性和绝对含量分别高达28%和5.85 wt.%。催化剂中的含N/O官能团和来自NH3的NH*和NH2*自由基促进了酯键和β-O-4键的断裂,将酚类中间体转化为4-乙烯基苯酚。同时,NH3还作为活化剂和氮掺杂剂,实现了掺氮生物炭催化剂的原位再生,催化剂氮含量和SBET的再生率分别为84.5%-150%和72.9%-85.4%。此外,催化剂也表现出良好的稳定性和可重复使用性,在BC10催化剂重复使用3次后,4-乙烯基苯酚的产率仍高达5.85-6.05wt.%。这项研究也是首次基于NH3与掺氮生物炭催化剂的协同作用探究4-乙烯基苯酚的形成路径和催化剂的原位再生机理,为生物质资源的高值化利用指明了新的方向。

结果发表在Industrial Crops and Products:

W Guo, Y Wang, W Chen*, GX  Xu, G Zhu, GXie, LXu, Zhen Fang, Q Zhang, H Yang. Insight into the synergistic influence of nitrogen-doped biochar and NH3 on selective production of 4-vinyl phenol from biomass catalytic pyrolysis by coupling catalyst in-situ regeneration. Industrial Crops and Products (IF = 5.9) (2024) 214, 118520. https://doi.org/10.1016/j.indcrop.2024.118520

 

水热制氢:Red mud supported Ni-Cu bimetallic material for hydrothermal production of hydrogen from biomass

星期一, 1 4 月, 2024

Red mud supported Ni-Cu bimetallic material for hydrothermal production of hydrogen from biomass

Recently, master student Mr. Gong-xun Xu supervised by Prof. Zhen Fang, collaborated with Dr. S Nanda (Dalhousie University), Profs. AK Dalai (University of Saskatchewan) and Prof. JA Kozinski (Lakehead University published a research article in Industrial Crops & Products about Red mud supported Ni-Cu bimetallic material for hydrothermal production of hydrogen from biomass.

Exploring efficient and reliable catalysts to achieve gasification of biomass waste is a promising research endeavour. In this study solid waste red mud (RM, an inexpensive and efficient support) loaded Ni-Cu metals (Ni-Cu/RM) was used to catalyze hydrothermal gasification of cotton stalk at 340-400 ℃ and 16-30 MPa. In the presence of Ni-Cu/RM catalyst, 21.88 mmol/g H2 yield with 79.89% carbon balance was achieved, increased by 22.8 times under the optimized conditions (380 ℃ for 5 min) based on orthogonal experiments. Under the optimal conditions, H2 yield with neat Ni and Ni/RM loaded on RM is 0.96 and 12.94 mmol/g, respectively due to the specific surface area soaring by 72.0 times from 0.7 to 50.5 m2/g. With Ni-Cu/RM bimetallic catalyst, H2 yield jumped from 3.41 to 21.88 mmol/g, 6.7 times higher than that neat Ni, or reached 84% with Ni-Cu/Al2O3 if Al2O3 was as support. It is further found that Cu promoted the dispersion of Ni on red mud with surface area rising from 50.47 to 73.42 m2/g together with forming Ni-Cu alloy (alkalinity of Ni-Cu/RM rose to 285.65 from 172.21 μmol/g for Ni/RM) enhanced H2 generation. When temperature grew from 340 ℃ (subcritical) to 400 ℃ (supercritical region), H2 yield improved by 3 times from 9.21 to 28.50 mmol/g. Red mud is an ideal candidate for replacing the commercial support Al2O3.

Results were published in Industrial Crops and Products:

GX Xu, S Nanda , JJ Guo, YQ Song, JA Kozinski, AK Dalai, Zhen Fang*, Red Mud Supported Ni-Cu Bimetallic Material for Hydrothermal Production of Hydrogen from Biomass, Industrial Crops and Products (IF 6.4), 212 (2024), 118370. https://doi.org/10.1016/j.indcrop.2024.118370.

Red mud supported Ni-Cu bimetallic material for hydrothermal production of hydrogen from biomass赤泥负载Ni-Cu双金属材料用于生物质水热制氢


赤泥负载Ni-Cu双金属材料用于生物质水热制氢

最近,硕士徐功迅在方真教授的指导下,与加拿大Dalhousie大学助理教授S Nanda博士、Saskatchewan大学 AK Dalai院士和加拿大Lakehead 大学工学院院长JA Kozinski院士在在国际学术期刊Industrial Crops and Products (Q1, IF = 5.9) 发表了一篇题为“赤泥负载Ni-Cu双金属材料用于生物质水热制氢”的研究性论文。

探索高效可靠的催化剂来实现生物质废弃物的气化是一项有前途的研究工作。该研究以负载Ni-Cu金属(Ni-Cu/RM)的固体废赤泥(RM)为载体,在340 ~ 400 ℃、16 ~ 30 MPa条件下催化棉秆水热气化。在Ni-Cu/RM催化剂作用下,优化条件下(380℃、5 min)的H2产率提高22.8倍,达到21.88 mmol/g,碳平衡79.89%。在最优条件下,纯Ni和Ni/RM负载在RM上的H2产率分别为0.96和12.94 mmol/g,比表面积从0.7提高到50.5 m2/g,提高了72.0倍。采用Ni-Cu/RM双金属催化剂时,H2产率从3.41提高到21.88 mmol/g,是纯Ni催化剂的6.7倍;在以Al2O3为载体时,H2产率达到84%。Cu促进了Ni在赤泥上的分散,表面积从50.47增加到73.42 m2/g,并形成了Ni-Cu合金(Ni/RM的Ni-Cu/RM的碱度从172.21提高到285.65μmol/g),促进了H2的生成。当温度从340℃(亚临界)升高到400℃(超临界)时,H2产率从9.21提高到28.50mmol/g,提高了3倍。赤泥是替代Al2O3的理想载体。

 

结果发表在Industrial Crops and Products:

GX Xu, S Nanda , JJ Guo, YQ Song, JA Kozinski, AK Dalai, Zhen Fang*, Red Mud Supported Ni-Cu Bimetallic Material for Hydrothermal Production of Hydrogen from Biomass, Industrial Crops and Products (IF 6.4), 212 (2024), 118370. https://doi.org/10.1016/j.indcrop.2024.118370.