Prof. Zhen Fang visited York and McGill in Canada

2 7 月, 2017

方真教授会见加拿大约克大学JA Kozinski院士

方真教授访问加拿大约克大学和麦基尔大学

应加拿大约克大学JA Kozinski教授(加拿大工程院院士)邀请,方真教授2017年6月14-21日对加拿大进行了访问。他参观了约克大学工学院机械系和土木工程系,访问了约克大学能源实验室(多伦多)并讨论双方合作研究和共同申请项目等问题。

同时,方真教授还顺访了位于蒙特利尔市的麦基尔大学,会见了化学系Ian Butler教授,材料工程系Roderick I. L. GUTHRIE教授(加拿大皇家科学院院士)和土木工程系的Yixin Shao教授, 探讨进一步合作问题。另外,方真教授参观了化学系CJ Li教授(加拿大皇家科学院院士,Green Chem副主编)实验室,对他们在绿色化学方面的成果和研究产生了浓厚的兴趣。

Prof. Zhen Fang visited York and McGill in Canada

From June 14 to 21, 2017, Prof. Zhen Fang visited York and McGill in Canada. At York, he met Prof. Kozinski (The Founding Engineering Dean) and toured the Departments of Mechanical and Civil engineering, visited the York University Energy Laboratory and discussed issues such as collaborative research and joint application for projects.

Later, Prof. Fang visited McGill University in Montreal, where he met Profs. Ian Butler (Chemistry Department), Roderick I. L. Guthrie (Materials Engineering Department) and Yixin Shao (Civil Engineering Department) to explore further cooperation. In addition, Prof. Fang visited Prof CJ Li’s Lab (Prof. Li is associate editor of Green Chem) in Chemistry Department, and found a strong interest in the achievements and research in the field of green and sustainable chemistry made at McGill.

Mr. Xingkang Li passed his defense for PhD degree

1 7 月, 2017

李兴康顺利通过2017年博士学位论文答辩

2017年5月22日,由昆明理工大学、云南师范大学等5位专家组成的答辩委员会听取了博士毕业生李兴康的论文<<有机溶剂预处理甘蔗渣及酶水解的研究>>报告和答辩。经答辩委员会讨论和无记名投票表决,一致同意李兴康同学通过学位论文答辩,建议按有关规定授予理学博士学位。在此毕业之际,向李兴康同学表示祝贺。

Mr. Xingkang Li passed his defense for PhD degree

On May 22nd, 2017, five experts from Kunming University of Science and Technology and Yunnan Normal University attended the presentation and defense of Mr. Xingkang Li for his thesis entitled Organosolv pretreatment of sugarcane bagasse for enzymatic hydrolysis“. Mr. Li is a doctoral student in biomass group under Prof. Fang,  who was expected to be graduated in 2017. After the discussion and secret ballot, the five dissertation committee members all agreed the thesis and defense of Xingkang Li, and suggested that the academic degree evaluation committee, award Mr. Xingkang Li the doctor’s degree in science, according to relevant regulations.

Congratulations to Xingkang!

Mr. Xingkang Li will Join Peking University at Shenzhen Graduate School for postdoc study.

Prof. Ying Zheng from The University of Edinburgh visited our Lab

30 6 月, 2017

英国爱丁堡大学郑莹教授一行访问我院

发布时间 : 2017-06-28 李骅 学院办公室 已浏览: 181

6月25日,英国爱丁堡大学工学院郑莹教授(加拿大工程院院士)一行访问我院。我院方真教授、李骅教授等热情接待了郑英教授一行。

李骅介绍了我院的基本情况,主要就学院国际化发展战略的主要设想与郑英教授一行进行交流。双方就互派交流生、教师交流访问及开展“4+1”硕士项目达成一致意见,并就后续工作的推进协商机制开展研讨。会后,郑英教授一行参观了方真教授的实验室,并参观了我院校园。

爱丁堡大学(The University of Edinburgh),简称爱大,英国顶尖学府,世界二十强顶尖大学,位于英国苏格兰首府爱丁堡市,创建于1583年,是英语国家中第六古老的大学。爱丁堡大学产生过23名诺贝尔奖获得者。达尔文、大卫·休谟、亚当·斯密、麦克斯韦、亚当·弗格森、詹姆斯·莫里斯等诸多名家均曾在爱丁堡学习或从事研究。

由于其悠久的历史、庞大的规模、卓越的教学质量与科研水平,爱丁堡大学在2016/17年QS世界大学排名中位居全球第19位;在2015/16年泰晤士高等教育世界大学排名中位居全球第24位,声誉排名全球第29位;在2015年和2016年维基百科世界大学影响力排名中均位居全球第16位。在英国官方每7年发布一次的2014REF英国大学研究排名中,高居全英第4位,仅次于牛津大学、伦敦大学学院和剑桥大学,是英国的超级精英大学。

On June 25, 2017, Prof. Ying Zheng and her colleagues from The University of Edinburgh (UK) visited our Lab and talked with the leader of college of engineering for collaborations in both education and research. Prof. Zheng is a world well-known expert in catalytic conversions of biomass and other organic materials.

Synthesis of Magnetic Carbonaceous Solid Acid and Base from Jatropha Hulls for the Production of Jatropha Biodiesel

16 4 月, 2017

Synthesis of Magnetic Carbonaceous Solid Acid and Base from Jatropha Hulls for the Production of Jatropha Biodiesel

Jatropha seeds were extracted oil for biodiesel production and the hulls were carbonized to load active sites as magnetic carbonaceous solid acid and base catalysts. Crude Jatropha oil was esterified to decrease its acid value to 1.3 from 17.2 mg KOH/g by the solid acid, and subsequently transesterified to biodiesel (96.7% yield) catalyzed by the solid base. After 3 cycles and magnetically separated, the deactivated base was catalyzed the hydrothermal gasification of biodiesel by-product (crude glycerol) with gasification rate of 81% and 82% H2 purity.

    Recently, biomass group synthesized magnetic carbonaceous solid acid (C-SO3H@Fe/JHC) and base (Na2SiO3@Ni/JRC) catalysts by loading active groups on the carbonaceous supporters derived from Jatropha-hull hydrolysate and hydrolysis residue. Characterization of their morphology, magnetic saturation, functional groups and total acid/base contents were performed by various techniques. Additional acidic functional groups that formed with Jatropha-hull hydrolysate contributed to the high acidity of C-SO3H@Fe/JHC catalyst for the pretreatment (esterification) of crude Jatropha oil with high acid values (AV). The AV of esterified Jatropha oil dropped down from 17.2 to 1.3 mg KOH/g, achieving a high biodiesel yield of 96.7% after subsequent transesterification reaction with Na2SiO3@Ni/JRC base that was cycled at least 3 times with little loss of catalysis activity. Both solid acid and base catalysts were easily recovered by magnetic force with average recovery yields of 90.3 wt% and 86.7%, respectively. After washed by ethanol, the catalysts were cycled for 10 times. The AV of esterified oil and biodiesel yield using the recycled catalysts remained below 2.0 mg KOH/g and above 85%, respectively. The existence of catalyst ions and residual methanol contributed to high H2 yield (81.0%) and high purity (81.7%) in the hydrothermal gasification of glycerol by-product using the deactivated solid base.

The results were published:

F Zhang, XF Tian, Zhen Fang*, M Shah, YT Wang, W Jiang, M Yao, Catalytic Production of Jatropha Biodiesel and Hydrogen with Magnetic Carbonaceous Acid and Base Synthesized from Jatropha Hulls,  Energy Conversion and Management, 142, 107–116  (2017).

 ————————————————-

小桐子壳合成磁性固体酸和碱催化剂及用以生产小桐子生物柴油和氢气

最近,生物能源组通过对小桐子壳水解液和水解残渣合成的磁性碳载体加载活性基团,合成磁性炭质固体酸 (C-SO3H@Fe/JHC)和碱(Na2SiO3@Ni/JRC)催化剂。通过各种测试技术对其形态、磁性饱和度、功能基团和总酸/碱含量进行表征。小桐子壳水解液形成的酸性官能团有助于其负载的催化剂(C-SO3H@Fe/JHC)具备更高的酸密度,用于预处理(酯化)高酸值小桐子油, 酸值从17.2 降为 1.3 mg KOH/g。预处理后的小桐子油,在由小桐子壳水解残渣合成的碱性催化剂(Na2SiO3@Ni/JRC)作用下,通过脂交换反应,生物柴油产率可高达96.7%,该碱性催化剂可循环至少三次, 催化活性损失很少。固体酸和碱催化剂均可通过磁铁轻易地回收, 平均回收率为 90.3 wt% 和86.7%。用乙醇洗涤后, 催化剂可循环十次。使用回收的催化剂,预处理油的酸值低于2.0 mg KOH/g,生物柴油的产率高达85%以上。催化剂离子和残留的甲醇可用于进一步提高,用失活固体碱催化水热气化甘油副产品的氢气产量 (81.0%) 和纯度 (81.7%)。

结果发表在Energy Conversion and Management : F Zhang, XF Tian, Zhen Fang*, M Shah, YT Wang, W Jiang, M Yao, Catalytic Production of Jatropha Biodiesel and Hydrogen with Magnetic Carbonaceous Acid and Base Synthesized from Jatropha Hulls,  Energy Conversion and Management, 142, 107–116  (2017)

Orderly layered Zr-benzylphosphonate nanohybrids for efficient transfer hydrogenation

28 3 月, 2017

Orderly layered Zr-benzylphosphonate nanohybrids for efficient transfer hydrogenation


Zirconium-xylylenediphosphonate nanohybrids, a class of unconventional metal-organic frameworks (UMOFs), are simply synthesized to have unique properties and are highly active for prodcuing biofules and chemicals via catalytic transfer hydrogenation

Catalytic transfer hydrogenation (CTH) is a sustainable and selective way to increase the hydrogen content of unsaturated molecules for producing either biofuels or valuable chemicals. Dr. Hu Li, a postdoctoral student, supervised by Profs. Song Yang (Guizhou university) and Zhen Fang prepared a series of mesoporous and orderly layered nanohybrids for the first time via simple and template-free assembly of zirconium with different xylylenediphosphonates. It was found that m-PhPZr nanoparticles (ca. 20-50 nm) with mesopores centered at 7.9 nm, and high molar ratio of Lewis acid to base sites (1:0.7) exhibited superior performance in CTH of ketones and biomass-derived aldehydes to corresponding alcohols with almost quantitative yields under mild conditions (as low as 82 ºC), especially in CTH of ethyl levulinate to the biofuel additive γ-valerolactone (up to 98% yield). It also showed high activity in one-pot production of biodiesel (with 89% yield) from high acid value oil, and in 5-hydroxymethylfurfural production (with 56% yield) via isomerization and dehydration of glucose. The catalyst is stable with little Zr leaching and deactivation after 5 cycles. Lewis acidic (Zr) and basic (PO3) centers of the heterogeneous catalyst were revealed to play a synergistic role in CTH of carbonyl compounds, e.g., ethyl levulinate to γ-valerolactone. Isotopic labeling experiments further indicated the occurrence of direct hydrogen transfer rather than metal hydride route.

The study was published:
H Li, Zhen Fang*, J He, S Yang, Orderly Layered Zr-Benzylphosphonate Nanohybrids for Efficient Acid/Base-Mediated Bifunctional/Cascade Catalysis, ChemSusChem, 10, 681–686  (2017).

———————————————————————-
介孔金属-有机膦酸层片材料的制备及其用于转移加氢合成生物燃料

催化转移加氢 (CTH; Catalytic transfer hydrogenation) 是一种可持续、选择性的方法来增加用于生产生物燃料或有价值的化学物质的不饱和分子中氢含量。生物能源组博士后李虎在杨松教授(贵州大学)和方真教授的指导下,通过简单、无模板的组装方法,用锆和不同的苯膦酸,合成了一系列的介孔和有序层状的纳米杂化材料。实验结果表明,m-PhPZr 纳米颗粒 (约 20-50  nm) 具有 7.9 nm介孔中心和高摩尔比的路易斯酸/碱 (1/0.7), 展现出在催化转移加氢酮和醛类生物质平台分子为相应的醇的优越性能,给出几乎定量的产率,反应温度温和(低至 82 º C),特别是在催化乙酰丙酸乙酯生成生物燃料γ-内酯具有高的活性(高达 98%的产率)。该催化剂,可从高酸值油脂中,一步法生产生物柴油 (产率为 89%),通过异构化和脱水葡萄糖生产5-羟甲基糠醛(产率为 56%)。催化剂表现出良好的稳定性,可以重复使用五次。在催化转移加氢羰基化合物(如乙酰丙酸乙酯合成 γ-戊内酯)时,刘易斯酸性 (Zr) 和碱(PO3) 中心发挥协同作用。同位素标记实验进一步预示着发生直接氢转移,而不是金属氢化物路线。

详情可见:
H Li, Zhen Fang*, J He, S Yang, Orderly Layered Zr-Benzylphosphonate Nanohybrids for Efficient Acid/Base-Mediated Bifunctional/Cascade Catalysis, ChemSusChem, 10, 681–686  (2017).