A new Springer book “Production of Biofuels and Chemicals from Lignin” was published

15 10 月, 2016

A new Springer book “Production of Biofuels and Chemicals from Lignin” was published

Recently, Springer has published a book entitled “Production of Biofuels and Chemicals from Lignin” edited by Profs. Zhen Fang and Richard L. Smith Jr., Springer, Hardcover •ISBN 978-981-10-1964-7, 435 pages, 2016. (http://www.springer.com/cn/book/9789811019647).

Lignin is the largest source of renewable aromatics in the world and is produced as a byproduct in huge quantities by the pulp and paper industry in the form of black liquor (ca. 50 million ton/a), but is also expected to be a major byproduct in emerging industries related to biofuels and bioproducts (ca. 2.7-8.1 million ton/a). The present text provides state-of-the-art reviews, current research and prospects on lignin production, lignin biological, thermal and chemical conversion methods and lignin technoeconomics. Fundamental topics related to lignin chemistry, properties, analysis, characterization, depolymerization mechanisms, enzymatic, fungal and bacterial degradation methods are covered. Practical topics related to technologies for lignin and ultra-pure lignin recovery, activated carbon, carbon fiber production and materials are covered. Biological conversion of lignin with fungi, bacteria or enzymes to produce chemicals is considered along with chemical, catalytic, thermochemical and solvolysis conversion methods. A case study is presented for practical polyurethane foam production from lignin.

This book contains 13 chapters contributed by leading experts in the field. The text is arranged into four key areas:

Part I: Lignin and Its Production (Chapters 1-3)

Part II: Biological Conversion (Chapters 4-6)

Part III: Chemical Conversion (Chapters 7-12)

Part IV: Techno-economics (Chapter 13)

Lignin has a bright future and will be an essential feedstock for producing renewable chemicals, biofuels and value-added products. Offering comprehensive information on this promising material, the book represents a valuable resource for students, researchers, academicians and industrialists in the field of biochemistry and energy.

This book is the sixth book of the Springer series entitled, “Biofuels and Biorefineries” (Prof. Zhen Fang is serving as editor-in-Chief), and the thirteenth English book published by Prof. Zhen Fang since 2009.

Biofuels and Biorefineries:

http://www.springer.com/series/11687?detailsPage=titles

lignin

斯普林格新书《木质素生产生物燃料和化学品》出版

由方真教授和日本东北大学Richard L. Smith Jr.教授主编的新书Production of Biofuels and Chemicals from Lignin》,最近由斯普林格公司出版发行。(精装,435页, ISBN 978-981-10-1964-7, 435 pages, 2016。)(http://www.springer.com/cn/book/9789811019647)。

木质素是世界上可再生芳烃的最大来源,并且作为副产物在纸浆和造纸工业中以黑液(约5千万吨/年)的形式大量生产,但也预期其将作为与生物燃料和生物制品相关的新兴产业的主要副产品(约为270-810万吨/年)。本书回顾了关于木质素生产,生物、热和化学转化木质素方法和木质素技术经济学的最新研究和前景。涵盖了与木质素化学、性质、分析、表征、解聚机理、酶、真菌和细菌降解方法有关的基本问题。涉及木质素和超纯木质素回收技术、活性炭、碳纤维生产和材料的实用技术。与化学、催化、热化学和溶剂分解转化方法一起,介绍了用真菌,细菌或酶生物转化木质素生产化学品。同时,给出了一个从木质素实际生产聚氨酯泡沫的案例研究。

本书包含13章,由来自世界各地该领域的顶尖专家撰写,每章均被同行评审和编辑以提高文本的质量、研究范围和覆盖的主题。该书包括四个关键领域:第一部分:木质素及其生产(第1-3章),第二部分:生物转化(第4-6章),第三部分:化学转化(第7-12章)和第四部分:技术经济学(第13章)。

木质素具有光明的未来,将是生产可再生化学品,生物燃料和附加值产品的必要原料。该书为这一有希望的领域提供了全面的信息,为生物化学和能源领域的学生,研究人员,学者和实业家提供了宝贵的学术资源。

该书是斯普林格系列丛书“生物燃料和生物炼制- Biofuels and Biorefineries”(方真教授担任该丛书总编辑)出版的第六本专著,也是方真教授自2009年以来,编著出版的第十三部英语专著

生物燃料和生物炼制丛书:

http://www.springer.com/series/11687?detailsPage=titles

Coproduction of Furfural and Easily Hydrolyzable Residue from Sugar Cane Bagasse

2 10 月, 2016

Coproduction of Furfural and Easily Hydrolyzable Residue from Sugar Cane Bagasse

In order to develop a process for the simultaneous production of furfural and easily hydrolyzable cellulose, the degradation of sugar cane bagasse in a single aqueous system and in a 2-methyltetrahydrofuran (MTHF)/aqueous AlCl3 biphasic system was studied.

Biomass group successfully produced furfural and easily hydrolyzable residue from sugar cane bagasse. In single aqueous system, the influence of acid species (FeCl3, HCl, and AlCl3) on furfural production and cellulose degradation was investigated at 150 °C. FeCl3 and HCl promoted furfural production from hemicellulose but with severe cellulose degradation. AlCl3 decreased cellulose degradation with considerable furfural yield and high glucan content in solid residues. The role of NaCl in furfural production and cellulose decomposition was also investigated in the single aqueous system using different acids as catalysts. Addition of NaCl significantly promoted furfural yield but also accelerated cellulose decomposition when FeCl3 or HCl was used as catalyst. In the AlCl3-catalyzed system, NaCl had less influence on residue yield and its composition, although NaCl also promoted furfural production. The influence of MTHF on furfural yield, residue composition, and enzymatic hydrolysis of residue was also studied. Under the best conditions (0.45 g of bagasse, 9 mL of MTHF, 9 mL of water, 0.1 M AlCl3, 150 °C, 45 min, and 10 wt % NaCl), 58.6% furfural was obtained while more than 90% of cellulose remained in the residue. The organic phase was separated from the aqueous phase directly by decantation. After reuse of organic phase for 3 cycles, 11.5 g/L furfural was obtained. The catalyst-containing aqueous phase could be reused directly after decantation of the organic phase without loss of activity. The obtained residue was easy to hydrolyze and produced 89.3% glucose yield after 96-h enzymatic hydrolysis at low cellulase loading (30 FPU of cellulase/g-glucan).

The study was published:

XK Li, Zhen Fang*, et al., Coproduction of Furfural and Easily Hydrolyzable Residue from Sugar Cane Bagasse in the MTHF/Aqueous Biphasic System: Influence of Acid Species, NaCl Addition, and MTHF, ACS Sustainable Chemistry & Engineering, 4, 5804−5813 (2016).

2016-10-2lxk-acs-sus

Furfural (58.6% yield) and cellulose-enriched residue (>90% glucan recovered) are coproduced with 89.3% glucose yield in a MTHF/aqueous AlCl3 system.

从甘蔗渣中生产糠醛和易水解残渣

为了开发生产糠醛和容易水解纤维素的生产工艺,对甘蔗渣在单一水相体系和 2-甲基四氢呋喃 (MTHF)/ AlCl3水溶液双相体系进行了研究。生物能源组成功地甘蔗渣中生产糠醛和易水解残渣。

在单一水相体系和 150 °C条件下,对酸的种类(FeCl3、 HCl 和 AlCl3)生产糠醛和纤维素降解的影响进行了研究。FeCl3和HCl 促进半纤维素生产糠醛,而严重地引起纤维素的降解。AlCl3可减少降解植物纤维素,并产生相当数量的糠醛产量和高含量的葡聚糖的固体残留物。使用不同的酸作为催化剂,在单一水相体系中考察了 NaCl 在糠醛生产和纤维素分解中的作用。当用FeCl3 或盐酸作为催化剂时,添加NaCl 有力地促进糠醛产量,但也加速了纤维素分解。在 AlCl3 催化体系中,NaCl对残留物产量和其组成影响较小,尽管NaCl 也促进了糠醛生产。MTHF对糠醛产量、 残留物的组成及其酶水解进行了研究。在最佳条件下(0.45 g蔗渣,9 毫升 MTHF,9 毫升的水、 0.1 M AlCl3、 150 °C、 45 分钟和 10 wt % NaCl),可获得58.6%的糠醛和超过 90%的纤维素留存在残渣中。有机相可从水相直接分层而得到并循环利用。有机相循环3次后,可得到 11.5 g/L 糠醛。有机相分离后,包含催化剂的水相没有失去活性,可以直接重复使用。

所得的残渣很容易水解, 96 h酶水解后,葡萄糖产率为 89.3% (30 FPU纤维素酶/g-葡聚糖)。

该研究发表于︰

XK Li, Zhen Fang*, et al., Coproduction of Furfural and Easily Hydrolyzable Residue from Sugar Cane Bagasse in the MTHF/Aqueous Biphasic System: Influence of Acid Species, NaCl Addition, and MTHF, ACS Sustainable Chemistry & Engineering, 4, 5804−5813 (2016).

Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials

18 7 月, 2016

Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials

GA

Catalytic transformation of biomass sources into biofuels and value-added chemicals generally involves multi-step reaction processes, as well as difficulty in product separation and purification. In recent years, bifunctional catalytic materials have been demonstrated to be capable of catalyzing various domino/cascade- and tandem/sequential-type reactions in a single pot, thus realizing the direct and highly efficient conversion of upstream biomass molecules to target compounds.

Dr. Hu Li, a postdoctoral student, supervised by Profs. Song Yang (Guizhou university), RL Smith (Tohoku university, Japan) and Zhen Fang reviewed a series of bifunctional materials being used in one-pot multiple transformations of biomass into biofuels and related chemicals. Emphasis is placed on the assessment of the bifunctionality of catalytic materials, including Bronsted-Lewis acid, acid-base, and metal particles–acid or base bifunctional catalysts with some discussion being on combined catalytic systems with electrochemical, chemoenzymatic and photochemical methods. Plausible reaction mechanisms for key pathways are shown. Meanwhile, relevant auxiliaries to boost catalytic activity and product selectivity, such as reaction media, heating modes and morphological properties of the catalytic materials are analyzed. Use of appropriate bifunctional catalytic materials provides many opportunities for design of highly efficient reaction systems and simplified processing to produce biofuels and chemicals from lignocellulosic biomass.

The study was published:

H Li, Zhen Fang*, RL Smith Jr., S Yang, Efficient Valorization of Biomass to Biofuels with Bifunctional Solid Catalytic Materials, Progress in Energy and Combustion Science, 55: 98-194 (2016).

The paper is in “Altmetrics – Top Rated Articles”

——————————————————————–

双功能固体材料催化生物质高值转化为生物燃料

 生物质资源催化转化为液体燃料和高附加值化学品通常会经历多步反应历程,且往往涉及产物难分离、纯化等问题。近年来,双功能催化材料被证实能“一锅法”催化多种串联或级联反应,实现生物质上游分子直接、高效地催化转化为目标化合物。

生物能源组博士后李虎在杨松教授(贵州大学),RL Smith教授(日本东北大学)和方真教授的指导下,综述了一系列双功能催化材料在一锅、多步催化生物质转化为生物燃料和相关化学品中的应用情况,并重点考察了固体材料的双功能活性位点(包括Bronsted-Lewis酸位点、酸-碱位点、金属-酸或碱位点等)在催化反应过程中对产物种类、选择性、产率等的调控作用。同时,也简要探讨了电化学、化学-酶、光化学等方法在协同催化生物质转化为高附加值小分子中的研究近况。针对上述催化体系,提出了可能的反应机理,并分析了反应介质、加热方式、固体材料的形貌结构等对催化性能的影响。最后,本论文展望了双功能固体材料在高效催化木质纤维素转化为特定目标产物、以及在简化或便利催化过程中潜在的研究空间和发展前景。

详情可见:

H Li, Zhen Fang*, RL Smith Jr., S Yang, Efficient Valorization of Biomass to Biofuels with Bifunctional Solid Catalytic Materials, Progress in Energy and Combustion Science, 55: 98-194 (2016).

该论文进入:”Altmetrics – Top Rated Articles”

有机电解液预处理北美白松用于水解生产生物质和生产乙醇

17 7 月, 2016

tian有机电解液预处理北美白松用于水解生产生物质和生产乙醇

软木是自然界中一类对预处理和酶促水解具有强顽拗性的生物质。这大大限制了其作为纤维素乙醇工业原料的潜力。田霄飞博士在加拿大Western大学Lars Rehmann副教授, Chunbao Charles Xu教授和方真教授的指导下,使用了有机电解液的溶剂体系对的北美白松为代表的软木进行了预处理、水解和乙醇发酵的研究工作。本研究探讨了影响生物质溶解和预处理效力的关键因素。随着有机电解液种离子液体的摩尔比的上升,生物质中的结晶纤维素I结构的结晶度发生了有规律的降低,生物质碎片化和纤丝化程度明显上升,生物质表面木质素成分的分布发生了明显了改变。同时,纤维素,半纤维素和酸不溶型木质素成分的含量没有明显的改变。对预处理后的生物质进行酶促水解,24小时的快速水解率和120小时的最终水解率分别提高了460%和500%。水解液中没有对发酵过程有抑制的产物存在。经过含有离子液体摩尔比为0.9的有机电解液预处理后,乙醇的最终产率达到了11.04克/100克原料。

相关工作已经发表,请参考:

Xiaofei Tian, Lars Rehmann, Chunbao Charles Xu, and Zhen Fang. Pretreatment of Eastern White Pine (Pinus strobes L.) for Enzymatic Hydrolysis and Ethanol Production by Organic Electrolyte Solutions. ACS Sustainable Chemistry & Engineering 2016 4 (5), 2822-2829

DOI: 10.1021/acssuschemeng.6b00328

—————————————————————————

Pretreatment of Eastern White Pine (Pinus strobes L.) for Enzymatic Hydrolysis and Ethanol Production by Organic Electrolyte Solutions

 Dr Xiaofei Tian, supervised by Dr. Lars Rehmann, Prof. Chunbao Charles Xu and Professor Zhen FANG, developed and applied organic electrolyte solution (OES) in pre-treating of eastern white pine (EWP) that was acting as one of the most recalcitrant woody biomass for a subsequent enzymatic hydrolysis and bioethanol production. The influence of various crucial parameters that govern the dissolution and further pretreatment process were examined. A gradual reduction of the crystallinity of cellulose I, fragmentation and fibrillation, as well as lignin redistribution occurred with an increase of χ[AMIM]Cl (molar portion of [AMIM]Cl) from 0.1 to 0.9; whereas the content of the cellulose, acid insoluble lignin as well as hemicellulose composition did not change. The efficiency of glucose released from EWP through rapid enzymatic hydrolysis (24 h hydrolysis yield) and the final hydrolysis yield (120 h hydrolysis yield) were improved remarkably by up to 460% and 500% after OES pretreatment. No negative effect of OES pretreatment on downstream ethanol fermentation was observed, and the highest ethanol productivity was 11.04 g ethanol/100 g EWP (when χ[AMIM]Cl = 0.9).

More detailed information is available by referring this work as below.

Xiaofei Tian, Lars Rehmann, Chunbao Charles Xu, and Zhen Fang. Pretreatment of Eastern White Pine (Pinus strobes L.) for Enzymatic Hydrolysis and Ethanol Production by Organic Electrolyte Solutions. ACS Sustainable Chemistry & Engineering 2016 4 (5), 2822-2829

DOI: 10.1021/acssuschemeng.6b00328

 

响应面优化丁酸梭菌培养基并用于发酵热带植物废弃物水解液制备氢气

12 7 月, 2016

响应面优化丁酸梭菌培养基并用于发酵热带植物废弃物水解液制备氢气

氢气作为一种清洁和可再生能源,生物制氢技术与其他制氢方法相比,具有无污染、成本低、可再生等优点,因此,生物制氢技术的研究受到广泛关注。

生物能源组研究人员,通过响应面优化丁酸梭菌的发酵培养基,并运用发酵热带植物废弃物水解液制备氢气。此项工作表明,当丁酸梭菌的发酵培养基为(g/L):15.66 葡萄糖, 6.04 酵母粉, 4 蛋白胨, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O 和0.3 FeSO4·7H2O时氢气产率可达到最优值(2.02 mol H2 /mol葡萄糖)。甘蔗渣和小桐子果壳作为热带生物质废弃物经过两步稀酸水解后得到可用于发酵的还原糖。在最优培养基条件下,分别以甘蔗渣和小桐子果壳水解液代替葡萄糖作为碳源,丁酸梭菌的氢气产率达到2.06 mol H2 /mol总还原糖(甘蔗渣)和1.95 mol H2 /mol总还原糖(小桐子果壳)。其中氢气含量为49.7–64.34%。该研究为丁酸梭菌制备氢气的研究提供了一个较优的培养基组分,此外为进一步利用生物质废弃物制备氢气的研究提供了有效的方法。

详情可见:
D Jiang, Zhen Fang*, SX Chin, XF Tian, Biohydrogen Production from Hydrolysates of Jatropha Hulls and Sugarcane Bagasse with Clostridium Butyrium, Scientific Reports, 6:27205 (2016).

Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum

Hydrogen can serve as a clean and renewable energy resource. In comparison with of existing methods of hydrogen production, biohydrogen (or biological hydrogen) production technology possesses advantages, such as pollution-free, lower cost, and renewable.
Biomass group successfully optimized the fermentation medium of Clostridium Butyricum by response surface methodology, and produced hydrogen from hydrolyzates of selected tropical biomass wastes under the optimal condition.
In their work, highest H2 yield of 2.02 mol H2/mol-glucose was achieved, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hulls hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7–64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.

The study was published:
D Jiang, Zhen Fang*, SX Chin, XF Tian, Biohydrogen Production from Hydrolysates of Jatropha Hulls and Sugarcane Bagasse with Clostridium Butyrium, Scientific Reports, 6:27205 (2016).

jd(a) Response surface plot and (b) corresponding contour of the mutual effects of glucose and yeast extract on H2 yield (24 h bottle fermentation at 35 °C with 130 rpm shaking).