Synthesis of Magnetic Carbonaceous Solid Acid and Base from Jatropha Hulls for the Production of Jatropha Biodiesel

16 4 月, 2017

Synthesis of Magnetic Carbonaceous Solid Acid and Base from Jatropha Hulls for the Production of Jatropha Biodiesel

Jatropha seeds were extracted oil for biodiesel production and the hulls were carbonized to load active sites as magnetic carbonaceous solid acid and base catalysts. Crude Jatropha oil was esterified to decrease its acid value to 1.3 from 17.2 mg KOH/g by the solid acid, and subsequently transesterified to biodiesel (96.7% yield) catalyzed by the solid base. After 3 cycles and magnetically separated, the deactivated base was catalyzed the hydrothermal gasification of biodiesel by-product (crude glycerol) with gasification rate of 81% and 82% H2 purity.

    Recently, biomass group synthesized magnetic carbonaceous solid acid (C-SO3H@Fe/JHC) and base (Na2SiO3@Ni/JRC) catalysts by loading active groups on the carbonaceous supporters derived from Jatropha-hull hydrolysate and hydrolysis residue. Characterization of their morphology, magnetic saturation, functional groups and total acid/base contents were performed by various techniques. Additional acidic functional groups that formed with Jatropha-hull hydrolysate contributed to the high acidity of C-SO3H@Fe/JHC catalyst for the pretreatment (esterification) of crude Jatropha oil with high acid values (AV). The AV of esterified Jatropha oil dropped down from 17.2 to 1.3 mg KOH/g, achieving a high biodiesel yield of 96.7% after subsequent transesterification reaction with Na2SiO3@Ni/JRC base that was cycled at least 3 times with little loss of catalysis activity. Both solid acid and base catalysts were easily recovered by magnetic force with average recovery yields of 90.3 wt% and 86.7%, respectively. After washed by ethanol, the catalysts were cycled for 10 times. The AV of esterified oil and biodiesel yield using the recycled catalysts remained below 2.0 mg KOH/g and above 85%, respectively. The existence of catalyst ions and residual methanol contributed to high H2 yield (81.0%) and high purity (81.7%) in the hydrothermal gasification of glycerol by-product using the deactivated solid base.

The results were published:

F Zhang, XF Tian, Zhen Fang*, M Shah, YT Wang, W Jiang, M Yao, Catalytic Production of Jatropha Biodiesel and Hydrogen with Magnetic Carbonaceous Acid and Base Synthesized from Jatropha Hulls,  Energy Conversion and Management, 142, 107–116  (2017).

 ————————————————-

小桐子壳合成磁性固体酸和碱催化剂及用以生产小桐子生物柴油和氢气

最近,生物能源组通过对小桐子壳水解液和水解残渣合成的磁性碳载体加载活性基团,合成磁性炭质固体酸 (C-SO3H@Fe/JHC)和碱(Na2SiO3@Ni/JRC)催化剂。通过各种测试技术对其形态、磁性饱和度、功能基团和总酸/碱含量进行表征。小桐子壳水解液形成的酸性官能团有助于其负载的催化剂(C-SO3H@Fe/JHC)具备更高的酸密度,用于预处理(酯化)高酸值小桐子油, 酸值从17.2 降为 1.3 mg KOH/g。预处理后的小桐子油,在由小桐子壳水解残渣合成的碱性催化剂(Na2SiO3@Ni/JRC)作用下,通过脂交换反应,生物柴油产率可高达96.7%,该碱性催化剂可循环至少三次, 催化活性损失很少。固体酸和碱催化剂均可通过磁铁轻易地回收, 平均回收率为 90.3 wt% 和86.7%。用乙醇洗涤后, 催化剂可循环十次。使用回收的催化剂,预处理油的酸值低于2.0 mg KOH/g,生物柴油的产率高达85%以上。催化剂离子和残留的甲醇可用于进一步提高,用失活固体碱催化水热气化甘油副产品的氢气产量 (81.0%) 和纯度 (81.7%)。

结果发表在Energy Conversion and Management : F Zhang, XF Tian, Zhen Fang*, M Shah, YT Wang, W Jiang, M Yao, Catalytic Production of Jatropha Biodiesel and Hydrogen with Magnetic Carbonaceous Acid and Base Synthesized from Jatropha Hulls,  Energy Conversion and Management, 142, 107–116  (2017)

Orderly layered Zr-benzylphosphonate nanohybrids for efficient transfer hydrogenation

28 3 月, 2017

Orderly layered Zr-benzylphosphonate nanohybrids for efficient transfer hydrogenation


Zirconium-xylylenediphosphonate nanohybrids, a class of unconventional metal-organic frameworks (UMOFs), are simply synthesized to have unique properties and are highly active for prodcuing biofules and chemicals via catalytic transfer hydrogenation

Catalytic transfer hydrogenation (CTH) is a sustainable and selective way to increase the hydrogen content of unsaturated molecules for producing either biofuels or valuable chemicals. Dr. Hu Li, a postdoctoral student, supervised by Profs. Song Yang (Guizhou university) and Zhen Fang prepared a series of mesoporous and orderly layered nanohybrids for the first time via simple and template-free assembly of zirconium with different xylylenediphosphonates. It was found that m-PhPZr nanoparticles (ca. 20-50 nm) with mesopores centered at 7.9 nm, and high molar ratio of Lewis acid to base sites (1:0.7) exhibited superior performance in CTH of ketones and biomass-derived aldehydes to corresponding alcohols with almost quantitative yields under mild conditions (as low as 82 ºC), especially in CTH of ethyl levulinate to the biofuel additive γ-valerolactone (up to 98% yield). It also showed high activity in one-pot production of biodiesel (with 89% yield) from high acid value oil, and in 5-hydroxymethylfurfural production (with 56% yield) via isomerization and dehydration of glucose. The catalyst is stable with little Zr leaching and deactivation after 5 cycles. Lewis acidic (Zr) and basic (PO3) centers of the heterogeneous catalyst were revealed to play a synergistic role in CTH of carbonyl compounds, e.g., ethyl levulinate to γ-valerolactone. Isotopic labeling experiments further indicated the occurrence of direct hydrogen transfer rather than metal hydride route.

The study was published:
H Li, Zhen Fang*, J He, S Yang, Orderly Layered Zr-Benzylphosphonate Nanohybrids for Efficient Acid/Base-Mediated Bifunctional/Cascade Catalysis, ChemSusChem, 10, 681–686  (2017).

———————————————————————-
介孔金属-有机膦酸层片材料的制备及其用于转移加氢合成生物燃料

催化转移加氢 (CTH; Catalytic transfer hydrogenation) 是一种可持续、选择性的方法来增加用于生产生物燃料或有价值的化学物质的不饱和分子中氢含量。生物能源组博士后李虎在杨松教授(贵州大学)和方真教授的指导下,通过简单、无模板的组装方法,用锆和不同的苯膦酸,合成了一系列的介孔和有序层状的纳米杂化材料。实验结果表明,m-PhPZr 纳米颗粒 (约 20-50  nm) 具有 7.9 nm介孔中心和高摩尔比的路易斯酸/碱 (1/0.7), 展现出在催化转移加氢酮和醛类生物质平台分子为相应的醇的优越性能,给出几乎定量的产率,反应温度温和(低至 82 º C),特别是在催化乙酰丙酸乙酯生成生物燃料γ-内酯具有高的活性(高达 98%的产率)。该催化剂,可从高酸值油脂中,一步法生产生物柴油 (产率为 89%),通过异构化和脱水葡萄糖生产5-羟甲基糠醛(产率为 56%)。催化剂表现出良好的稳定性,可以重复使用五次。在催化转移加氢羰基化合物(如乙酰丙酸乙酯合成 γ-戊内酯)时,刘易斯酸性 (Zr) 和碱(PO3) 中心发挥协同作用。同位素标记实验进一步预示着发生直接氢转移,而不是金属氢化物路线。

详情可见:
H Li, Zhen Fang*, J He, S Yang, Orderly Layered Zr-Benzylphosphonate Nanohybrids for Efficient Acid/Base-Mediated Bifunctional/Cascade Catalysis, ChemSusChem, 10, 681–686  (2017).

Direct conversion of carbohydrates to methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites

27 1 月, 2017

Direct conversion of carbohydrates to methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites Presentation1

Acid-base paired sites of ZrY hybrids with increased pore sizes are efficient for sugar isomerization and downstream reactions, while the local enhanced microwave irridation (MI) with zirconia is responsible for high sugar conversion, thus facilitating the one-pot multi-step catalytic process to produce ML in high yields (~70% from glucose).

Dr. Hu Li, a postdoctoral student, supervised by Profs. Song Yang (Guizhou university) and Zhen Fang prepared a series of metal-zeolite hybrids by impregnation and deposition-precipitation methods and charaterized with different techniques. Catalytic performance of these catalysts on microwave-assisted conversion of selected carbohydrates to the fuel component methyl levulinate (ML) in methanol was studied. It was demonstrated that metal oxide content/type and acid-base bifunctionality were closely correlated with substrate conversion and ML yield, respectively. Among various as-prepared catalysts, zirconia-zeolite hybrid ZrY6(0.5) with moderate acid-base site content (0.97 & 0.08 mmol g−1), high stability and porosity (average mesopore diameter: 6.2 nm) exhibited superior catalytic activity. At 180 ºC, around 67-73%, 78%, 53% and 27% yields of ML could be achieved from monosaccharides (e.g., glucose, mannose and galactose), sucrose, starch and cellulose, respectively. The Zr-Y6(0.5) hybrid exhibited good stability, and could be reused for five times with ML yields of > 63% from glucose.

The study was published:

H Li, Zhen Fang*, J Luo, S Yang, Direct Conversion of Biomass Components to the Biofuel Methyl Levulinate Catalyzed by Acid-Base Bifunctional Zirconia-Zeolites, Applied Catalysis B: Environmental, 200, 182–191 (2017).

—————————————————————

碱双功能氧化锆-分子筛直接催化转化碳水化合物为乙酰丙酸甲酯生物燃料

石化资源的过度使用往往会造成环境污染、全球气候变暖等问题,生物质作为一种可再生的有机碳源在制备生物能源和有机化学品方面表现出极大的应用前景。近年来,乙酰丙酸甲酯作为第二代生物能源受到广泛的研究和关注,但存在反应时间长、催化体系难重复利用等不足。最近,国际著名学术期刊Applied Catalysis B: Environmental,发表了我校生物燃料一项最新研究成果,论文题为“Direct Conversion of Biomass Components to the Biofuel Methyl Levulinate Catalyzed by Acid-Base Bifunctional Zirconia-Zeolites”,第一署名单位为南京农业大学,第一作者为我校工学院博士后李虎,通讯作者为我校方真教授。

工学院农业机械系生物能源组博士后李虎在杨松教授(贵州大学)和方真教授的指导下,用浸渍法和沉积沉淀法制备了一系列金属-沸石混合物,作为催化剂,并对其化学和物理结构用不同的分析技术方法进行了测定。在甲醇中利用这些催化剂和微波照射技术,催化辅助转化生物质主要组分-碳水化合物,为乙酰丙酸甲酯燃料过程,进行了实验研究。结果表明,金属氧化物的含量/类型和酸-碱双功能,与原料的转化率和乙酰丙酸甲酯产率密切相关。在各种合成的催化剂中,氧化锆-沸石混合物ZrY6(0.5)具有适度的酸-碱含量(0.97 & 0.08 mmol g1)、高的稳定性和高孔隙度 (平均孔直径︰6.2纳米)并表现出优越的催化活性。在 180 ºC条件下,可以分别从单糖(如葡萄糖、甘露糖、半乳糖)、蔗糖、淀粉和纤维素原料合成得到67-73%左右,78%、53%和27%的乙酰丙酸甲酯产率。Zr-Y6(0.5)型催化剂表现出良好的稳定性,可以重复使用五次,并可从葡萄糖中合成高产率(>63%)的乙酰丙酸甲酯。

详情可见:

H Li, Zhen Fang*, J Luo, S Yang, Direct Conversion of Biomass Components to the Biofuel Methyl Levulinate Catalyzed by Acid-Base Bifunctional Zirconia-Zeolites, Applied Catalysis B: Environmental, 200, 182–191 (2017).

Prof. Janusz Kozinski, dean of engineering at York Univ (Toronto) visited our group

24 12 月, 2016

 

Prof. Janusz Kozinski, dean of engineering at York Univ (Toronto) visited our group from Dec. 15 to 20,

and gave two wonderful lectures at College of Engineering:

1.”Symbiosis Between Energy and the Environment: Frontiers of Bioenergy”

2.”Renaissance Engineering by Design: Leadership and Governance of New Programs in STEM”

He also met Vice-president Xu for further collaboration.

加拿大约克大学工学院院长访问我校

来源:国际合作与交流处 作者:丰蓉 发稿时间:2016-12-21

12月17日至20日,加拿大约克大学(York University)工学院院长Janusz Kozinski院士来我校访问,与我校工学院方真教授进行学术交流和科研合作。

20日上午,副校长徐翔会见了Kozinski院士,商讨拓展学术合作、建立校际关系等事宜。徐翔提出,江苏省与加拿大安大略省是友好省州,南农大与约克大学有幸一同加入2015年成立的江苏—安大略省大学联盟,希望在联盟框架下加强互动,推动院级和校级层面的师生交流、合作科研等实质性合作。她还邀请Kozinski教授成为我校客座教授,为推进两校工学领域的学术合作作出更大贡献。

Kozinski院士感谢徐翔的邀请,希望在与方真教授团队良好的合作基础上,尽快建立校际合作关系。他将大力支持双方师生交流,为南农学生提供部分奖学金赴约克大学进行短期学习或实习,欢迎南农青年教师赴约克大学进修。双方随后就正式建立校际合作关系达成一致。工学院和国际合作与交流处相关人员参加会见。

来访期间,Kozinski院士还参观了国家肉品质量控制工程技术中心和国家信息农业工程技术中心。

约克大学创建于1959年,办学规模在加拿大排名第三。学校设有11个学院,包括拉松德(Lassonde)工学院、环境研究学院、文学与专业研究学院等。约克大学有在校生近53,000名,其中本科生46,400人,研究生5,900余人,国际学生6,200人。教职员工共7,000余人。约克大学拉松德工程学院(Lassonde School of Engineering)于2012年7月正式成立,下设土木工程,地球、空间科学和工程,电气工程和计算机科学,以及机械工程等四个系。

[ 编辑:王梦璐 石松 ]

 

A new Springer book “Production of Biofuels and Chemicals from Lignin” was published

15 10 月, 2016

A new Springer book “Production of Biofuels and Chemicals from Lignin” was published

Recently, Springer has published a book entitled “Production of Biofuels and Chemicals from Lignin” edited by Profs. Zhen Fang and Richard L. Smith Jr., Springer, Hardcover •ISBN 978-981-10-1964-7, 435 pages, 2016. (http://www.springer.com/cn/book/9789811019647).

Lignin is the largest source of renewable aromatics in the world and is produced as a byproduct in huge quantities by the pulp and paper industry in the form of black liquor (ca. 50 million ton/a), but is also expected to be a major byproduct in emerging industries related to biofuels and bioproducts (ca. 2.7-8.1 million ton/a). The present text provides state-of-the-art reviews, current research and prospects on lignin production, lignin biological, thermal and chemical conversion methods and lignin technoeconomics. Fundamental topics related to lignin chemistry, properties, analysis, characterization, depolymerization mechanisms, enzymatic, fungal and bacterial degradation methods are covered. Practical topics related to technologies for lignin and ultra-pure lignin recovery, activated carbon, carbon fiber production and materials are covered. Biological conversion of lignin with fungi, bacteria or enzymes to produce chemicals is considered along with chemical, catalytic, thermochemical and solvolysis conversion methods. A case study is presented for practical polyurethane foam production from lignin.

This book contains 13 chapters contributed by leading experts in the field. The text is arranged into four key areas:

Part I: Lignin and Its Production (Chapters 1-3)

Part II: Biological Conversion (Chapters 4-6)

Part III: Chemical Conversion (Chapters 7-12)

Part IV: Techno-economics (Chapter 13)

Lignin has a bright future and will be an essential feedstock for producing renewable chemicals, biofuels and value-added products. Offering comprehensive information on this promising material, the book represents a valuable resource for students, researchers, academicians and industrialists in the field of biochemistry and energy.

This book is the sixth book of the Springer series entitled, “Biofuels and Biorefineries” (Prof. Zhen Fang is serving as editor-in-Chief), and the thirteenth English book published by Prof. Zhen Fang since 2009.

Biofuels and Biorefineries:

http://www.springer.com/series/11687?detailsPage=titles

lignin

斯普林格新书《木质素生产生物燃料和化学品》出版

由方真教授和日本东北大学Richard L. Smith Jr.教授主编的新书Production of Biofuels and Chemicals from Lignin》,最近由斯普林格公司出版发行。(精装,435页, ISBN 978-981-10-1964-7, 435 pages, 2016。)(http://www.springer.com/cn/book/9789811019647)。

木质素是世界上可再生芳烃的最大来源,并且作为副产物在纸浆和造纸工业中以黑液(约5千万吨/年)的形式大量生产,但也预期其将作为与生物燃料和生物制品相关的新兴产业的主要副产品(约为270-810万吨/年)。本书回顾了关于木质素生产,生物、热和化学转化木质素方法和木质素技术经济学的最新研究和前景。涵盖了与木质素化学、性质、分析、表征、解聚机理、酶、真菌和细菌降解方法有关的基本问题。涉及木质素和超纯木质素回收技术、活性炭、碳纤维生产和材料的实用技术。与化学、催化、热化学和溶剂分解转化方法一起,介绍了用真菌,细菌或酶生物转化木质素生产化学品。同时,给出了一个从木质素实际生产聚氨酯泡沫的案例研究。

本书包含13章,由来自世界各地该领域的顶尖专家撰写,每章均被同行评审和编辑以提高文本的质量、研究范围和覆盖的主题。该书包括四个关键领域:第一部分:木质素及其生产(第1-3章),第二部分:生物转化(第4-6章),第三部分:化学转化(第7-12章)和第四部分:技术经济学(第13章)。

木质素具有光明的未来,将是生产可再生化学品,生物燃料和附加值产品的必要原料。该书为这一有希望的领域提供了全面的信息,为生物化学和能源领域的学生,研究人员,学者和实业家提供了宝贵的学术资源。

该书是斯普林格系列丛书“生物燃料和生物炼制- Biofuels and Biorefineries”(方真教授担任该丛书总编辑)出版的第六本专著,也是方真教授自2009年以来,编著出版的第十三部英语专著

生物燃料和生物炼制丛书:

http://www.springer.com/series/11687?detailsPage=titles