Cellulase immobilized on mesoporous biochar synthesized by ionothermal carbonization of cellulose

16 3 月, 2018

Cellulase immobilized on mesoporous biochar synthesized by ionothermal carbonization of cellulose

Recently, Mr. Chang-hui Zhu (a PhD student from Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences) supervised by Prof. Zhen FANG synthesized biochar via ionothermal carbonization and pyrolysis, and it was subsequent used to adsorb free cellulase physically for enzymatic hydrolysis.

In order to recover free cellulase, a mesoporous biochar was synthesized from cellulose by ionic thermal and pyrolysis methods for the adsorption of free cellulase. Kinetics analysis showed that the affinity of the immobilized cellulase to carboxymethyl cellulose was better than that of free cellulase. The immobilized cellulase at different pH and temperatures was more stable than those of free cellulase. It was used to hydrolyze pretreated cellulose with [Bmim]Cl with total reducing sugar yield of 99.9%. The immobilized cellulase activity can still retain 74.8% after 5 cycles. Lastly, the immobilized cellulase can improve sugar production from the pretreated corncob for potential practical applications.

Results were published in Cellulose: Chang-hui Zhu, Zhen Fang*, Tong-chao Su, and Qi-ying Liu, Cellulase Immobilized on Mesoporous Biochar Synthesized by Ionthermal Carbonization of Cellulose, Cellulose,  25(4), 2473-2485 (2018).

Mesoporous biochar was synthesized by ionothermal carbonization, and pyrolysis for the immobilization of cellulase to hydrolyze ionic liquid pretreated cellulose and corncob. During pretreated cellulose hydrolysis, total reducing sugar yield of 92.2 % was achieved with 74.8% enzyme activity remained after 5 cycles.(通过离子热和热解方法合成了介孔生物炭,该生物炭用于固定纤维素酶,固定化纤维素酶用于水解离子液体预处理的纤维素以及玉米芯。其中在预处理纤维素水解,总还原糖产率可达92.2%,固定化酶循环使用5次后,活性仍保留74.8%)。

最近,朱长辉同学(中国科学院广州能源研究所博士研究生)在方老师的指导下,通过离子热和热解法由纤维素合成生物炭以及后续物理吸附制备固定化纤维素酶,并将其应用于离子液体预处理纤维素/生物质的水解。
为了回收游离纤维素酶,通过离子热和热解两步法由纤维素合成一种介孔生物炭以用于吸附游离纤维素酶。动力学分析表明,固定化纤维素酶对羧甲基纤维素的亲和力优于游离纤维素酶。 不同pH和温度下的固定化纤维素酶比游离纤维素酶更稳定。该固定化酶具有较好的催化预处理纤维素水解的能力,总还原糖产率可达92.2%,固定化酶循环使用5次后,活性仍保留74.8%。最后,该固定化酶结合离子液体预处理技术,对水解生物质纤维素表现出一定的应用前景。
结果发表在Cellulose: Chang-hui Zhu, Zhen Fang*, Tong-chao Su, and Qi-ying Liu, Cellulase Immobilized on Mesoporous Biochar Synthesized by Ionthermal Carbonization of Cellulose, Cellulose 25(4), 2473-2485 (2018).

Prof. Zhen FANG appointed as Associate Editor of “the Journal of Supercritical Fluids”

10 2 月, 2018

Prof. Zhen FANG becomes an Associate Editor for “the Journal of Supercritical Fluids”

Informed by Dr. Angela Welch, Senior Publisher (Chemical & Biomedical Engineering journals), ELSEVIER, Prof. Zhen Fang was appointed as an Associate Editor for peer-reviewed scientific journal, the Journal of Supercritical Fluids (IF 3.1), after the role of being an Editorial Board Member of it for a few months (07/2017-02/2018).

As an Associate Editor, Prof. Fang would work closely with the regional editor to help cover submissions from Asia and will be to coordinate the peer-review process and submit a recommended decision. He will also handle the assigned papers in the areas of biofuels and supercritical water.

He is also serving as  Editor-in-Chief of Springer Book Series – Biofuels and Biorefineries,  Associate Editor of Biotechnol Biofuels (IF 5.5),as well as editorial (advisory) board members of Biofuel Bioprod Bior (Willey), Energy Sustain Soc (Springer), and Energy Policy Res (Taylor & Francis).


方真老师担任《The Journal of Supercritical Fluids》【《超临界流体学报》】副主编

最近, 方真老师应爱思唯尔出版商Angela Welch博士邀请,担任《The Journal of Supercritical Fluids》【《超临界流体学报》】副主编(Associate Editor)。最初的任命将为期2年。作为副主编, 方老师将协助地区主编,处理亚洲地区的稿件。同时,他还将处理生物燃料和超临界水领域的论文。《The Journal of Supercritical Fluids》 (影响因子 3.1, 化工Q1区,https://www.journals.elsevier.com/the-journal-of-supercritical-fluids/) ,是爱思唯尔(ELSEVIER)主办的国际期刊, 专门涉及超临界流体和过程的基本原理和应用。其目的是为学术和工业界研究人员提供一个重点的平台, 报告他们的研究结果, 并准备好进入这一迅速发展的领域的进展。它的覆盖面是多学科的并且包括基础的和应用的专题。

 

Biomass-derived mesoporous Hf-containing hybrid for efficient Meerwein-Ponndorf-Verley reduction at low temperatures

31 1 月, 2018

A novel biomass-derived mesoporous bifunctional hybrid (FDCA-Hf) prepared by facile assembly of 2,5-furandicarboxylic acid (FDCA) with hafnium (Hf) was highly stable and active for the production of biofuels and valuable chemicals from bio-based compounds such as ketones, aldehydes and acidic oils via acid-base cooperative catalysis

Recently, Dr. Hu Li supervised by Prof. Zhen  Fang  designed and prepared a new porous and acid-base bifunctional hybrid (FDCA-Hf)  by simple assembly of biomass-derived 2,5-furandicarboxylic acid (FDCA) with hafnium (Hf) under template-free conditions. The resulting FDCA-Hf hybrid with mesopores centered at 6.9 nm, moderate surface area (365.8 m2/g) and acid-base couple sites (density: 0.51 vs 0.97 mmol/g, acid/base molar ratio: 0.53), could selectively catalyze the Meerwein-Ponndorf-Verley reduction of carbonyl compounds under mild reaction conditions (as low as 90 ºC in a short time of 1 h), especially of ethyl levulinate to γ-valerolactone, in quantitative yields (95-100%) and relatively higher reaction rate (e.g., turnover frequency: 2.28 h-1) compared to other catalysts. Moreover, the efficient simultaneous (trans)esterification of Jatropha oils with high acidic values to biodiesel (up to 98% yield) could also be achieved over FDCA-Hf with robust acid-base catalytic sites. The FDCA-Hf hybrid was highly stable due to the presence of robust metal-organic framework and could be resued with no decline in activity. Further studies demonstrated that the synergistic role of Lewis acid-base couple species (Hf4+–O2–) and Brønsted acidic species (-OH) of FDCA-Hf contributed greatly to its pronounced catalytic activity.

Related results were published:

H Li , TT Yang, Zhen Fang*, Biomass-derived Mesoporous Hf-containing Hybrid for Efficient Meerwein-Ponndorf-Verley Reduction at Low Temperatures. Applied Catalysis B: Environmental (IF 11.7), 227, 79–89 (2018).

最近,国际学术期刊Applied Catalysis B: Environmental(第一署名单位为南京农业大学,第一作者为博士后李虎,通讯作者为方真教授)发表了生物燃料最新研究成果。

李虎博士通过简单的组装2,5-呋喃二甲酸(FDCA)和金属铪(Hf),制备出一种新型介孔双功能的混合物(FDCA-Hf),它高度稳定和活跃,可用于酸碱协同催化生物基化合物如酮,醛和高酸值油低温高效生产生物燃料和有价值的化学品。

详情可见:

H Li , TT Yang, Zhen Fang*, Biomass-derived Mesoporous Hf-containing Hybrid for Efficient Meerwein-Ponndorf-Verley Reduction at Low Temperatures. Applied Catalysis B: Environmental (IF 11.7), 227, 79–89 (2018).

Inclusion of Zn into Metallic Ni Enables Selective and Effective Synthesis of 2,5-Dimethylfuran

6 12 月, 2017

Inclusion of Zn into Metallic Ni Enables Selective and Effective Synthesis of 2,5-Dimethylfuran

Recently, Dr. X. Kong supervised by Profs. Y Zhu (Chinese Academy of Sciences) and Zhen Fang developed  a highly selective Ni-based alloy catalyst for furanic fuel production from 5-hydroxymethylfurfuran. The NiZn alloy catalyst was formed through Zn inclusion to Ni by controllable reduction of the NiZnAl hydrotalcite-derived NiO–ZnO–Al2O3 mixed oxide. The combination of temperature-programmed reduction (TPR), in situ X-ray diffraction (XRD), CO-adsorbed infrared spectroscopy (CO-IR), and X-ray photoelectron spectroscopy (XPS) revealed that the surface of the NiZn catalyst was composed of β1-NiZn while the bulk was composed of α-NiZn. Moreover, the surface Ni atoms were geometrically isolated by Zn atoms and modulated to be electron-rich. Finally, the rate of C═O/C—O hydrogenolysis over C═C/C-C hydrogenation for NiZn alloy catalyst was approximately three times higher than that of monometallic Ni catalyst. A 93.6% yield of DMF was obtained over NiZn alloy catalyst. The greatly improved DMF yield was thus attributed to the electron modification and isolation of Ni atoms due to the formation of NiZn alloy.

Related results were published:

X. Kong, Y. Zhu, H. Zheng, Y. Zhu, Zhen Fang*, Inclusion of Zn into Metallic Ni Enables Selective and Effective Synthesis of 2,5-Dimethylfuran from Bioderived 5-Hydroxymethylfurfural, ACS Sustainable Chemistry & Engineering 5 (2017) 11280-11289.

High yield of DMF (93.6%) was obtained from hydrogenolysis of HMF, which is an important process for sustainable fuel production from biomass.【通过调变金属Ni的电子状态和结构状态,实现了Ni基催化剂高选择性催化5-羟甲基糠醛加氢制呋喃燃料的过程】

—————————————-

高选择性Ni基催化剂催化5-羟甲基糠醛制呋喃液体燃料

最近,国际学术期刊ACS Sustainable Chemistry & Engineering(影响因子5.9,第一署名单位为南京农业大学,第一作者为孔晓,通讯作者为中科院山西煤化所朱玉雷研究员和方真教授),发表了生物能源组催化转化生物质平台分子制生物液体燃料最新研究成果。阐明了NiZn合金化对Ni加氢催化性能的调变。
孔晓博士通过在Ni催化剂上引入金属Zn,形成了NiZn合金催化剂。该催化剂表面由β1-NiZn组成,体相为α-NiZn。合金化过程使得催化剂表面得到调变,金属Zn向金属Ni转移电子,使Ni电子状态发生变化;同时Zn很好的稀释Ni原子,进而减弱呋喃环在Ni上的吸附,最后催化剂表现出较高的5-羟甲基糠醛选择性加氢选择性。

孔晓博士还在斯普林格出版社出版的专著《Production of Biofuels and Chemicals with Bifunctional Catalysts》上应邀撰写书的一章节,详细介绍了非均相催化剂的表征方法和基本原理,以及用固体酸、金属和金属酸双功能催化剂促进纤维素转化。

详情可见:
1. X. Kong, Y. Zhu, H. Zheng, Y. Zhu*, Zhen Fang*, Inclusion of Zn into Metallic Ni Enables Selective and Effective Synthesis of 2,5-Dimethylfuran from Bioderived 5-Hydroxymethylfurfural, ACS Sustainable Chemistry & Engineering 5 (2017) 11280-11289.
2. X Kong, Y Zhu, H Li, Zhen Fang*, RL Smith, Jr, Introduction to Characterization Methods for Heterogeneous Catalysts and Their Application to Cellulose Conversion Mechanisms, Editors: Zhen Fang, RL Smith Jr, H. Li, Production of Biofuels and Chemicals with Bifunctional Catalysts, Springer Book Series – Biofuels and Biorefineries, Publisher: Springer-Verlag, Heidelberg Berlin, ISBN 978-981-10-5136-4, Chapter 2, 2017.
3. H Li, X Kong, Zhen Fang*, RL Smith, Jr, Fundamentals of Bifunctional Catalysis for Transforming Biomass-Related Compounds into Chemicals and Biofuels, Editors: Zhen Fang*, RL Smith Jr, H. Li, Production of Biofuels and Chemicals with Bifunctional Catalysts, Springer Book Series – Biofuels and Biorefineries, Publisher: Springer-Verlag, Heidelberg Berlin, ISBN 978-981-10-5136-4, Chapter 1, 2017.

Production of Liquefied Oil Palm Empty Fruit Bunch Based Polyols via Microwave Heating

6 12 月, 2017

Production of Liquefied Oil Palm Empty Fruit Bunch Based Polyols via Microwave Heating

Recently, Mr. UA Amran (a PhD student from Universiti Kebangsaan Malaysia, Malaysia) supervised by Profs. S Zakaria and Zhen Fang produced polyols from oil palm wastes using microwave.

Optimization of microwave-assisted liquefaction of oil palm empty fruit bunch fiber (EFB) and cellulose (EFBC) in ethylene glycol (EG) was carried out to produce polyols. The liquefaction residues and hydroxyl numbers of the resultant polyols from respective sources were studied and compared. EFB produced a minimum residue of 3.22% at the optimal parameters of 160 °C and 15 min. Meanwhile, optimum liquefaction of EFBC produced 1.03% residue at 175 °C and 40 min. The maximum hydroxyl numbers of both EFB (749.22 mg KOH/g) and EFBC (639.91 mg KOH/g) polyols were obtained at optimum conditions. FTIR analysis revealed the degradation mechanism of cellulose and lignin in EFB at different temperatures. Lignin was found to be liquefied easily at lower temperatures (130 and 145 °C). However, most of the cellulose began to be liquefied at the optimum temperature (160 °C) and severely degraded at higher temperatures (175 and 190 °C).

Related results were published:
1. UA Amran, S Zakaria*, CH Chia, Zhen Fang*, MZ Masli, Production of Liquefied Oil Palm Empty Fruit Bunch (EFB) Based Polyols via Microwave Heating, Energy & Fuels, 31(10), 10975–10982 (2017).

通过微波加热,液化棕榈油果的空壳生产多元醇

生物能源组与Universiti Kebangsaan Malaysia联合培养的博士生UA Amran先生在导师S Zakaria和方真教授指导下,利用微波反应系统液化棕榈油果的空壳生产多元醇。相关研究结果以“Production of Liquefied Oil Palm Empty Fruit Bunch (EFB) Based Polyols via Microwave Heating”,为题发表在国际专业期刊Energy & Fuels, 31(10), 10975–10982 (2017)。