增强二元醇醚化木质素Enhancing α-etherification of lignin in Eucalyptus diol pretreatment to improve lignin monomer production

8 6 月, 2022

Enhancing α-etherification of lignin in Eucalyptus diol pretreatment to improve lignin monomer production

Recently, Dr. Chengyu Dong and Prof. Zhen Fang, collaborated with Prof. G Cravotto at University of Turin (Italy) and Dr. S-Y Leu at Hong Kong Polytechnic University published a paper about enhancing α-etherification of lignin in Eucalyptus diol pretreatment.

In this work, α-etherification of lignin in diol pretreatment was selectively enhanced at mild temperature for lignin isolation and subsequent valorisation. More than 90% of lignin was removed from Eucalyptus at 120 °C in diol (ethylene glycol and 1,4-butanediol) pretreatment, resulting in >90% cellulose conversion in 24 h at 7.5 FPU/g glucan cellulase loading. Subsequent catalytic transfer hydrogenolysis of the isolated lignins with Ru/C in ethanol gave 15% monomer yield on native lignin basis, 5 times of that from the technical ethanol process (170 °C). HSQC NMR analysis revealed that diol pretreated lignin (120 °C) contained ~23% α-etherified β-O-4 interunit bonds, indicating that lignin degradation (i.e. cleavage of β-O-4 bonds) was suppressed via etherification by grafting a hydroxyl group at the α position of lignin. This finding was consistent with the isolated lignin (120 °C) had less number of phenolic OH and higher molecular weight via 31P NMR and GPC analysis. 31P NMR analysis also revealed that diol isolated lignin contained more numbers of aliphatic OH than ethanol-isolated lignin, which increased lignin solubility and maintained the high yield (>80%) of isolated lignin from Eucalyptus at 120 °C as expected. In summary, diol pretreatment of woody biomass can effectively isolate more lignin for hydrogenolysis to valued-added monomers without compromising the isolated yield of lignin and hydrolysis yield of remained cellulose.

Related results were published in Industry crops and products:

CY Dong, XZ Meng, S-Y Leu, LJ Xu, ZL Wu, G Cravotto, Zhen Fang*, Enhancing a-Etherification of Lignin in Eucalyptus Diol Pretreatment to Improve Lignin Monomer Production, Industrial Crops and Products, 185, 115130, https://doi.org/10.1016/j.indcrop.2022.115130 (2022).

Enhancing α-etherification of lignin by diol pretreatment at mild temperature (120 °C) to isolate lignin for producing 5 times monomer yield of that from technical ethanol pretreatment (170 °C) by hydrogenolysis. (在二元醇预处理过程中,木质素的α-醚化在温和温度(120 ℃)下增强,其分离木质素氢解单体收率达到工业乙醇预处理(170 ℃)单体收率的5倍)


董澄宇博士在国际学术期刊Industry crops and products发表学术论文

最近,农业工程期刊Industry crops and products (第一署名单位为南京农业大学,第一作者为董澄宇博士,通讯作者为方真教授, 合作单位意大利都灵大学G Cravotto教授和香港理工大学S-Y Leu 博士)发表了一篇关于提高桉树二醇预处理过程中木质素α-醚化的文章。

在该研究中,二元醇预处理中木质素a-醚化在温和的温度下被选择性地增强,可高效分离木质素并利于木质素的高值化利用。在120 ℃,二元醇(乙二醇和1,4-预处理的桉树木质素去除率达到90%以上,纤维素在24小时内转化率即为90%。随后在乙醇中用钌/碳催化氢解木质素,单体产率为15%,是工业乙醇预处理(170 ℃)的5倍。二维核磁共振分析表明,二元醇预处理木质素(120 °C) 包含23%α-醚化β-O-4化学键,表明木质素降解(即β-O-4键的断裂)被在木质素α-醚化抑制。这个结果与木质素的核磁磷谱分析和凝胶色谱结果分析抑制,该条件下分离的木质素酚羟基含量少,分子量高。核磁磷谱分析还表明,二元醇分离的木质素比乙醇分离的木质素含有更多的脂肪族羟基,这增加了木质素的溶解度并保持了较高的分离效率(120 ℃时,桉树木质素的分离率为80%)。综上所述,木质生物质的二醇预处理可以有效地分离出更多的木质素氢解为高附加值的单体,而不影响木质素的分离效率和纤维素的水解效率。

结果发表在Industry crops and products:

CY Dong, XZ Meng, S-Y Leu, LJ Xu, ZL Wu, G Cravotto, Zhen Fang*, Enhancing a-Etherification of Lignin in Eucalyptus Diol Pretreatment to Improve Lignin Monomer Production, Industrial Crops and Products, 185, 115130, https://doi.org/10.1016/j.indcrop.2022.115130 (2022).

热解制备左旋葡聚糖High Yield Production of Levoglucosan via Catalytic Pyrolysis of Cellulose at Low Temperature

24 4 月, 2022

High Yield Production of Levoglucosan via Catalytic Pyrolysis of Cellulose at Low Temperature

Recently, Dr Li-Qun Jiang (Associate Prof., Institute of Biological and Medical Engineering, Guangdong Academy of Sciences), Prof. H Li (Guizhou University) and Prof. Zhen Fang published an article in Fuel about levoglucosan production from catalytic pyrolysis of cellulose with acid-base bifunctional magnetic Zn-Fe-C catalysts.

Catalytic pyrolysis of cellulose to levoglucosan in improved yields was achieved with acid-base bifunctional magnetic Zn-Fe-C catalysts. Among tested catalysts, Zn4@Fe-C500 could not only increase levoglucosan yield by 5.4 times compared with non-catalytic cellulose pyrolysis at 300 °C, but also help lower reaction temperature by 200 °C due to acid-base site synergistic effect. Furthermore, the levoglucosan yield (80.1 wt%) from catalytic cellulose pyrolysis at 300 °C was much higher than that commonly conducted at 500 °C without catalyst (60.1 wt%). Thermogravimetric and kinetic analysis disclosed levoglucosan formation mechanism. Importantly, Zn4@Fe-C500 catalyst was highly recyclable with little deactivation after 5 consecutive cycles. This study exhibited great potential for industrial levoglucosan production from cellulose at low temperatures. Related results were published in Fuel:

LQ Jiang, JC Luo, F Xu, L Qian, YT Wang, H Li*, Zhen Fang*, High Yield Production of Levoglucosan via Catalytic Pyrolysis of Cellulose at Low Temperature, Fuel, 323 (2022) 124369. https://doi.org/10.1016/j.fuel.2022.124369

.

Production of Levoglucosan via Catalytic Pyrolysis of Cellulose at Low Temperature with Znn@Fe-CT acid-base bifunctional magnetic catalyst磁性固体酸碱两性催化剂Znn@Fe-CT催化纤维素定向热解制备左旋葡聚糖


 磁性固体酸碱两性催化剂Znn@Fe-CT催化纤维素定向热解制备左旋葡聚糖

最近,蒋丽群博士(广东省科学院生物与医学工程研究所副教授), 李虎教授 (贵州大学)和方真教授在国际学术期刊Fuel(IF: 6.609,Q1)发表题为“High Yield Production of Levoglucosan via Catalytic Pyrolysis of Cellulose at Low Temperature”的研究性论文。该研究制备了磁性固体酸碱两性催化剂Znn@Fe-CT用于催化纤维素快速热解选择性制取左旋葡聚糖。相关研究表明,Zn4@Fe-C500催化热解纤维素不仅可以将热解糖化反应温度从500 ℃降低至300 ℃,并且300 ℃下催化热解纤维素得到左旋葡聚糖的产率(80.1 wt%)远高于500℃(60.1 wt%)。经过5次循环实验后Zn4@Fe-C500仍然可以提升左旋葡聚糖的产率。该研究为纤维素定向热解转化提供了新思路。详情可见:

LQ Jiang, JC Luo, F Xu, L Qian, YT Wang, H Li*, Zhen Fang*, High Yield Production of Levoglucosan via Catalytic Pyrolysis of Cellulose at Low Temperature, Fuel, 323 (2022) 124369. https://doi.org/10.1016/j.fuel.2022.124369

.

10 4 月, 2022

NaFeO2-Fe3O4合成生物柴油Highly stable NaFeO2-Fe3O4 composite catalyst from blast furnace dust for efficient production of biodiesel at low temperature

Recently, Dr Yi-Tong Wang (Associate Prof., College of Metallurgy and Energy, North China University of Science and Technology) and Prof. Zhen Fang published an article in Industrial Crops & Products about using highly stable NaFeO2-Fe3O4 composite catalyst from blast furnace dust for biodiesel production.

Highly stable catalysts were prepared by wet impregnation of blast furnace dust (BFD) in Na2CO3·H2O, Na2CO3·10H2O, NaHCO3 and Na2CrO4 solution and subsequent calcination of 300-600 oC. At low temperature of 65 oC for 2 h with methanol/oil molar ratio of 15/1, high biodiesel yields of 100 wt% were obtained with 7wt% Na2CO3·H2O@BFD300 and Na2CO3·H2O@BFD400 catalyst (impregnating with Na2CO3·H2O solution and calcining at 300 and 400 oC) added for the first use. Na2CO3·H2O@BFD300 catalyst exhibited outstanding stability and recyclability with biodiesel yields of 100 wt% at the fifth use (93 wt% at the twelfth use) owing to impregnated Na2CO3 reacting with Fe2O3 in dust to produce stable and active nanocomponents of NaFeO2 (32.42 nm) and magnetic nanocomponent of Fe3O4 (size of 3.14 nm and Ms of 6.16 Am2/kg) in dust existing. The study provided practical guidance for biodiesel industrial production.

Related results were published in Industrial Crops & Products:

XM Wang, YN Zeng, LQ Jiang, YT Wang*, JG Li*, LL Kang, R Ji, D Gao, FP Wang, Q Yu, YJ Wang, Zhen Fang*. Highly stable NaFeO2-Fe3O4 Composite Catalyst from Blast Furnace Dust for Efficient Production of Biodiesel at Low Temperature, Industrial Crops and Products, 182, 114937, https://doi.org/10.1016/j.indcrop.2022.114937 (2022).

Efficient production of biodiesel can be achieved with Na2CO3·H2O@BFD300 catalyst for 12 reuses with 92.56 wt% yield.使用Na2CO3·H2O@BFD300催化剂实现生物柴油高效生产,循环12次后,产率仍可达92.56 wt%。


王一同博士和方真教授在国际学术期刊Industrial Crops & Products发表学术论文:

高炉粉尘制备NaFeO2-Fe3O4复合催化剂用于生物柴油合成

最近,王一同博士(华北理工大学冶金与能源学院副教授)和方真教授在国际学术期刊Industrial Crops & Products(IF: 5.645,Q1)发表题为“高炉粉尘制备NaFeO2-Fe3O4复合催化剂用于生物柴油合成”的研究性论文。

利用Na2CO3·H2O,Na2CO3·10H2O,NaHCO3和Na2CrO4水溶液分别湿法浸渍高炉粉尘,于300-600 oC高温活化制备高稳定性催化剂。在65 oC、醇油摩尔比15/1、催化剂用量7 wt%的条件下反应2 h,Na2CO3·H2O@BFD300和Na2CO3·H2O@BFD400催化剂获得了100 wt%的产率。由于浸渍的Na2CO3和高炉粉尘中的Fe2O3反应生成稳定且有活性的纳米组分NaFeO2(32.42 nm)以及高炉粉尘中含有的磁性纳米组分Fe3O4(晶粒:3.14 nm;磁性:6.16 Am2/kg),Na2CO3·H2O@BFD300催化剂表现出优异的稳定性和可回收性,循环12次后仍可获得93 wt%的产率。该研究为生物柴油的工业化生产提供了实用指导。详情可见:

XM Wang, YN Zeng, LQ Jiang, YT Wang*, JG Li*, LL Kang, R Ji, D Gao, FP Wang, Q Yu, YJ Wang, Zhen Fang*. Highly stable NaFeO2-Fe3O4 Composite Catalyst from Blast Furnace Dust for Efficient Production of Biodiesel at Low Temperature, Industrial Crops and Products (IF 5.6), 182, 114937, https://doi.org/10.1016/j.indcrop.2022.114937 (2022).

双功能Na-Fe-Ca催化剂生物柴油Production of biodiesel at low temperature using bifunctional Na-Fe-Ca nanocatalyst from blast furnace waste

10 4 月, 2022

Production of biodiesel at low temperature using bifunctional Na-Fe-Ca nanocatalyst from blast furnace waste

Recently, Dr Yi-Tong Wang (Associate Prof., College of Metallurgy and Energy, North China University of Science and Technology) and Prof. Zhen Fang published an article in Fuel about using highly active bifunctional Na-Fe-Ca nanocatalyst from blast furnace dust for biodiesel production.

Nanocatalysts for biodiesel production were prepared via wet impregnation of blast furnace dust (BFD) in Na2CO3 (Na-BFD) and CaCO3 (Ca-BFD) suspension solutions and calcination at 500 and 600 oC, respectively. Biodiesel yields of 100.0 wt% (Na-BFD500) and 98.3 wt% (Ca-BFD600) were achieved at 65 oC. Synthesized catalysts showed outstanding activity and recyclability, due to the transition of CaCO3, Na2CO3 and Fe2O3 to nanocrystals of NaFeO2 (29.9 nm), Ca2Fe2O5 (10.5 nm), CaO (100.1 nm) and Ca2Fe2O5 (50.0 nm). Na-BFD500 achieved 95.8 wt% biodiesel yield with 16 cycles, whereas Ca-BFD600 reached 94.1 wt% biodiesel yield with 7 cycles via magnetic separation. BFD containing convertible magnetic and active components (Fe2O3 and CaCO3) was an ideal raw material to synthesize catalyst for biodiesel production with high catalytic efficiency and easy separation. The study provided a practical utilization of industrial solid waste for biodiesel production.

Related results were published in Fuel:

YT Wang, XM Wang, D Gao, FP Wang, YN Zeng, JG Li*, LQ Jiang, Q Yu, R Ji, LL Kang, YJ Wang, Zhen Fang*, Efficient Production of Biodiesel at Low Temperature Using Highly Active Bifunctional Na-Fe-Ca Nanocatalyst from Blast Furnace Waste, Fuel, 322, 124168, https://doi.org/10.1016/j.fuel.2022.124168 (2022).

Nanocatalysts produced by impregnation and calcination transesterified soybean oil to biodiesel with 100 wt% yield. 通过浸渍和煅烧制备了纳米催化剂用于催化豆油酯交换制备生物柴油,产率高达100 wt%。


高炉粉尘制备双功能Na-Fe-Ca纳米催化剂用于生物柴油合成

最近,王一同博士(华北理工大学冶金与能源学院副教授)和方真教授在国际学术期刊Fuel(IF: 6.609,Q1)发表题为“高炉粉尘制备双功能Na-Fe-Ca纳米催化剂用于生物柴油合成”的研究性论文。

利用Na2CO3和CaCO3水溶液分别湿法浸渍高炉粉尘,于500 ℃和600 oC高温活化制备纳米催化剂(Na-BFD500和Ca-BFD600),用于催化豆油制备生物柴油。催化剂经高温煅烧后,CaCO3、Na2CO3和Fe2O3晶体转变为纳米NaFeO2(29.9 nm)、Ca2Fe2O5(10.5 nm)、CaO(100.1 nm)和Ca2Fe2O5(50 nm)晶体,表现出优异的催化活性和可循环利用特性。Na-BFD500催化豆油制备生物柴油的产率达到100.0 wt%,循环16次后仍可获得95.8 wt%的产率,而Ca-BFD600催化豆油制备生物柴油的产率达到98.3 wt%,循环7次后仍可获得94.1 wt%的产率。该研究为工业固体废物用于生物柴油制备提供了新思路。详情可见:

YT Wang, XM Wang, D Gao, FP Wang, YN Zeng, JG Li*, LQ Jiang, Q Yu, R Ji, LL Kang, YJ Wang, Zhen Fang*, Efficient Production of Biodiesel at Low Temperature Using Highly Active Bifunctional Na-Fe-Ca Nanocatalyst from Blast Furnace Waste, Fuel (IF 6.6), 322, 124168, https://doi.org/10.1016/j.fuel.2022.124168 (2022).

捐书: 20 books were donated by Prof. Zhen Fang

14 2 月, 2022

捐书: 20 books were donated by Prof. Zhen Fang

On Feb. 8, 2022, Prof. Zhen Fang donated 20 books edited/authored by him in renewable energy and green technologies to his hometown in Fujian:

  1. 1.P Bartocci, F Fantozzi, Q Yang, HP Yang, O Masek, YJ Yan, Zhen Fang, L Rigamonti, (Editors), Sustainable Biomass and Waste Conversion, Elsevier, 2022.
  2. 2.Zhen Fang, RL Smith, Jr., LJ Xu (Editors), Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste, Springer, Heidelberg Berlin, 2021.
  3. 3.Zhen Fang, RL Smith, Jr., LJ Xu (Editors), Production of Biofuels and Chemicals with Pyrolysis, Springer, Heidelberg Berlin, 2020.
  4. 4.YT Wang, Zhen Fang (Editors), Catalytic Biomass to Renewable Biofuels and Biomaterials, MDPI (Basel, Switzerland), 2020.
  5. 5.Zhen Fang, RL Smith, Jr., XF Tian (Editors), Production of Materials from Sustainable Biomass Resources, Springer, Heidelberg Berlin, 2019.
  6. 6.Zhen Fang, RL Smith, Jr., H Li (Editors), Production of Biofuels and Chemicals with Bifunctional Catalysts, Springer, Heidelberg Berlin, 2017.
  7. 7.Zhen Fang, RL Smith, Jr., X Qi (Editors), Production of Platform Chemicals from Sustainable Resources, Springer, Heidelberg Berlin, 2017.
  8. 8.Zhen Fang, RL Smith, Jr.(Editors), Production of Biofuels and Chemicals from Lignin, Springer, Heidelberg Berlin, 2016.
  9. 9.Zhen Fang, RL Smith, Jr., X Qi (Editors), Production of Hydrogen from Renewable Resources, Springer, Heidelberg Berlin, 2015.
  10. 10.Zhen Fang, RL Smith, Jr., X Qi (Editors), Production of Biofuels and Chemicals with Microwave, Springer, Heidelberg Berlin, 2015.
  11. 11.Zhen Fang, RL Smith, Jr., X Qi (Editors), Production of Biofuels and Chemicals with Ultrasound, Springer, Heidelberg Berlin, 2015.
  12. 12.Zhen Fang, C Xu (Editors), Near-critical and Supercritical Water and Their Applications for Biorefineries, Springer, Heidelberg Berlin, 2014.
  13. 13.Zhen Fang, RL Smith, Jr., X Qi (Editors), Production of Biofuels and Chemicals with Ionic Liquids, Springer, Heidelberg Berlin, 2014.
  14. 14.Zhen Fang (Editor), Liquid, Gaseous and Solid Biofuels – Conversion Techniques, InTech, London, UK, 2013.
  15. 15.Zhen Fang (Editor), Biofuels – Economy, Environment and Sustainability, InTech, London, UK, 2013.
  16. 16.Zhen Fang (Editor), Pretreatment Techniques for Biofuels and Biorefineries, Springer, Berlin Heidelberg, 2013.
  17. 17.Zhen Fang (Editor), Biodiesel – Feedstocks, Production and Applications, InTech, London, UK, 2013.
  18. 18.J. M. Marchetti, Zhen Fang (Editors), Biodiesel: Blends, Properties and Applications, Nova Science Publishers, Inc., New York, 2011.
  19. 19.Zhen Fang (Author), Rapid Production of Micro- and Nano-particles Using Supercritical Water, Springer, Berlin Heidelberg, 2010.
  20. 20.Zhen Fang (Author), Complete Dissolution and Oxidation of Organic Wastes in Water, VDM Verlag Dr. Müller, Saarbrücken, Germany, 2009.

hdrpl

28日,方真教授档案图书捐赠仪式在泰宁县档案馆举行。

县领导黄维云出席仪式并讲话。

会上,县领导对方真先生的到来表示热忱的欢迎,对方院士热心捐赠珍贵的图书档案资料表示最诚挚的感谢!此次,方真院士捐赠的院士证书及他编著的20册珍贵图书档案资料(其中2部随后寄送),将进一步丰富泰宁县档案馆馆藏,助力科技事业的发展。

翻译:

1.P Bartocci,F Fantozzi,Q Yang,HP Yang,O Masek,YJ Yan,方真,L Rigamonti,(编著),《可持续生物质和废弃物转化》,爱思唯尔出版社,2022

2.方真,RL Smith,Jr.,徐禄江(编著),《可持续再生有机固体废物生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2021

3.方真,RL Smith,Jr.,徐禄江(编著),《热解生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2020

4.王一同,方真 (编著),《催化生物质转化为可再生生物燃料和生物材料》,MDPI(瑞士巴塞尔)出版社,2020

5.方真,RL Smith,Jr.,田霄飞(编著),《可持续生物质资源生产材料》,柏林•海德堡,斯普林格出版社,2019

6.方真,RL Smith,Jr.,李虎(编著),《双功能催化剂生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2017

7.方真,RL Smith,Jr.,漆新华(编著),《可持续资源生产平台化学品》,柏林•海德堡,斯普林格出版社,2017

8.方真,RL Smith,Jr.(编著),《木质素生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2016

9.方真,RL Smith,Jr.,漆新华(编著),《可再生资源生产氢气》,柏林•海德堡,斯普林格出版社,2015

10.方真,RL Smith,Jr.,漆新华(编著),《利用微波生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2015

11.方真,RL Smith,Jr.,漆新华(编著),《利用超声波生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2015

12.方真,徐春保(编著),《近临界水和超临界水及其在生物炼制中的应用》,柏林•海德堡,斯普林格出版社,2014

13.方真,RL Smith,Jr.,漆新华(编著),《利用离子液体生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2014

14.方真(编著),《液体、气体和固体生物燃料-转化技术》,InTech出版社,英国,伦敦,2013

15.方真(编著),《生物燃料-经济、环境和可持续性》,InTech出版社,英国,伦敦,2013

16.方真(编著),《生物燃料和生物精炼的预处理技术》,柏林•海德堡,斯普林格出版社,2013

17.方真(编著),《生物柴油-原料、生产和应用》,InTech出版社,英国,伦敦,2013

18.JM Marchetti,方真(编著),《生物柴油:混合物、性质和应用》,Nova Science Publishers出版社,纽约,2011

19.方真(作者),《超临界水快速制备微米和纳米颗粒》,柏林•海德堡,斯普林格出版社,2010

20.方真(作者),《水中有机废物的完全溶解和氧化》,德国,萨尔布吕肯,VDM Verlag Dr. Müller出版社,2009