Archive for the ‘未分类’ Category

Springer book “Production of Materials from Sustainable Biomass Resources”

星期六, 17 11 月, 2018

Springer book “Production of Materials from Sustainable Biomass Resources” 

Recently, Springer has published (in press) a book entitled “Production of Materials from Sustainable Biomass Resources” edited by Profs. Zhen Fang, RL Smith Jr. and Dr. XF Tian, Springer, Hardcover ISBN978-981-13-3767-3, 500 pages, 2019 (https://www.springer.com/cn/book/9789811337673) .

Lignocellulosic biomass consists of the biopolymers (cellulose, hemicellulose and lignin) that form a natural structural matrix with structural similarities but uniqueness among its many forms. As one of the most abundant renewable resources, lignocellulosic biomass can be transformed into materials, chemicals and energy with sustainable chemistry and engineering. The substitution of traditional fossil resources by the three major biopolymers as sustainable feedstocks has been extensively investigated for the manufacture of high value-added products including biofuels, commodity chemicals, bio-based functional materials, and heterogeneous catalysts that could be directly applied for promoting the manufacturing processes. Aimed at developing innovative materials and fuels for practical application, this book was conceived for the collection of studies on state-of-art techniques developed specifically for lignocellulose component derivation, and producing functional materials, composite polymers, carbonaceous biocatalysts, and pellets from lignocellulosic biomass with emphasis on sustainable chemistry and engineering. Technological strategies in terms of physical processing or biological conversion of biomass for material production are also included. Each individual chapter was contributed by globally-selected experts or professionals in the field and externally reviewed to provide a broad perspective of applications on the frontier.

This book contains 12 chapters contributed by leading experts in the field. The text is arranged into five key areas:

Part I: Isolation and purification of lignocellulose components (Chapter 1)

Part II: Composite polymers derived from lignin and cellulose (Chapters 2 and 3)

Part III: Functional materials derived from cellulose and lignocelluloses (Chapters 4-8)

Part IV: Biomass pellets as fuels (Chapters 9-11)

Part V: Biosynthesis of polymers from renewable biomass (Chapter 12)

The text should be of interest to professionals in academia and industry who are working in the fields of natural renewable materials, biorefinery of lignocellulose, biofuels and environmental engineering. It can also be used as comprehensive references for university students with backgrounds of chemical engineering, material science and environmental engineering.

This book is the ninth book of the series entitled, “Biofuels and Biorefineries”, (Prof. Zhen Fang is serving as Editor-in-Chief), and the sixteenth English book edited/authored by Prof. Zhen Fang since 2009.

Biofuels and Biorefineries:

http://www.springer.com/series/11687?detailsPage=titles

 斯普林格新书《可持续生物资源生产材料》出版

由方真老师、日本东北大学RL Smith Jr.教授和华南理工大学田霄飞副教授主编的新书《可持续生物资源生产材料》,最近由斯普林格公司出版发行。(精装,500页, ISBN978-981-13-3767-3,2019)(https://www.springer.com/cn/book/9789811337673 )

木质纤维素生物质由生物聚合物组成(三大组分:纤维素、半纤维素和木质素),其组成的天然结构具有一定的相似性但又有其独特性。作为最丰富的可再生资源之一,木质纤维素可通过可持续化学工程转化为材料,化学品和能源。利用这三大主要生物聚合物为原料制备高附加值产品代替传统的化石资源已被广泛研究,包括生产生物燃料、商业化学品、生物基功能材料和能够直接应用促进生成过程的非均相催化剂。为了给实际应用开发新材料和燃料提供指导,本书旨在收集木质纤维素组分衍生物技术发展水平,及木质纤维素利用可持续化学工程生产功能性材料、复合聚合物、碳基生物催化剂和燃料颗粒。本书还包括物理加工生物质原料和生物质原料生物转化的技术策略。本书包含12个章节,每个章节由全球范围内挑选的该领域的专家或教授编写并通过严格的外审,为读者提供前沿应用的广泛视角。

本书分为五个主要部分:

第一部分:木质纤维素成分的分离和纯化(第1章)

第二部分:木质素和纤维素衍生的复合聚合物(第2章和第3章)

第三部分:纤维素和木质纤维素衍生的功能材料(第4-8章)

第四部分:生物质颗粒燃料(第9-11章)

第五部分:生物合成聚合物(第12章)

本书在材料、可再生能源、环境与化学科学、工程、资源开发、生物质加工、生物燃料和化学工业等领域提供了全面的信息。它为从事天然可再生材料、木质纤维素生物精炼、生物燃料和环境工程领域的学术界及工业界的专业人士提供了宝贵的学术资源。它还可以作为具有化学工程、材料科学和环境工程背景的大学生的综合参考文献。

该书是斯普林格系列丛书“生物燃料和生物炼制- Biofuels and Biorefineries”(方真老师担任该丛书总编辑,该丛书章节总下载量已超11万次)出版的第九本专著,也是方真老师自2009年以来,编著出版的第十六部英语专著

生物燃料和生物炼制丛书:

http://www.springer.com/series/11687?detailsPage=titles

Supercritical water gasification (SCWG) of waste cooking oil

星期二, 30 10 月, 2018

Supercritical water gasification (SCWG) of waste cooking oil

Recently, Prof. JA Kozinski group at Waterloo collaborated with Profs. AK Dalai at U Saskatchewan and Zhen FANG studied SCWG of waste cooking oil.

In the work, Dr. S Nanda (U Western Ontario) et al. studied waste cooking oil gasification at variable temperatures (375-675°C), feed concentration (25-40 wt%) and reaction time (15-60 min) to investigate their effects on syngas yield and composition. Maximum yields of hydrogen (5.16 mol/kg) and total gases (10.5 mol/kg) were obtained at optimal temperature, feed concentration and reaction time of 675°C, 25 wt% and 60 min, respectively. At 5 wt% loading, Ru/Al2O3 enhanced hydrogen yield (10.16 mol/kg) through water-gas shift reaction, whereas Ni/Si-Al2O3 improved methane yield (8.15 mol/kg) via methanation reaction. The trend of hydrogen production from catalytic supercritical water gasification of waste cooking oil at 675°C, 25 wt% and 60 min decreased as Ru/Al2O3 > Ni/Si-Al2O3 > K2CO3 > Na2CO3. The results indicate the recycling potential of waste cooking oil for hydrogen production through hydrothermal gasification.

Results were published:

S Nanda, R Rana, H Hunter, Zhen Fang, AK Dalai, JA Kozinski*, Hydrothermal Catalytic Processing of Waste Cooking Oil for Hydrogen-rich Syngas Production, Chemical Engineering Sciencehttps://doi.org/10.1016/j.ces.2018.10.039 (2018).

—————————

超临界水气化(SCWG)废食用油

最近,加拿大滑铁卢大学的JA Kozinski教授研究组与萨斯喀彻温大学AK Dalai教授和方真教授教授合作,研究了超临界水气化废食用油。

S Nanda博士(U Western Ontario)等研究了不同温度(375-675 °C)、物料浓度(25- 40 wt %)和反应时间(15- 60 min)对废食用油气化的影响,研究了它们对合成气产量和组成的影响。在最佳条件下(675 °C, 25 wt %, 60 min)分别获得最大产氢量(5.16 mol/kg)和总气体量(10.5 mol/kg)。在5wt %的催化剂负荷下,Ru/Al2O3通过水煤气变换反应提高了产氢量(10.16 mol/kg),而Ni/Si-Al2O3通过甲烷化反应提高了产氢量(8.15 mol/kg)。在675 °C、25 wt%和60 min时,催化超临界水气化制氢的趋势随着Ru/Al2O3 Ni/Si-Al2O3 > K2CO3 > Na2CO3的趋势下降。结果表明,废弃食用油通过水热气化制氢具有回收利用潜力。

结果发表在:

S Nanda, R Rana, H Hunter, Zhen Fang, AK Dalai, JA Kozinski*, Hydrothermal Catalytic Processing of Waste Cooking Oil for Hydrogen-rich Syngas Production, Chemical Engineering Science, https://doi.org/10.1016/j.ces.2018.10.039 (2018).

Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst

星期一, 17 9 月, 2018

Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst

Carbonaceous acid catalyst with high acid content was synthesized by metal (Zr) ion chelation and sulfonation of sodium carboxymethylcellulose. It catalyzed the esterification of oleic acid, with biodiesel yield > 99% at 40-90 oC (activation energy of 24.7 KJ/mol). (在低温下通过两步法合成的碳基固体酸Zr-SO3H@CMC表面酸度为8.45 mmol/g,可以在40-90 oC催化油酸酯化获得> 99%的生物柴油产率;在90 oC,催化剂循环10次,生物柴油的产率仍> 87%。)

 Recently, Miss Yi-Tong Wang (PhD student from Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences) supervised by Prof. Zhen FANG synthesized carbonaceous catalyst by a two-step method at low temperatures. It had high total acid content (8.45 mmol/g) for oleic acid esterification with high biodiesel yields (> 99%) at 40-90 oC. Under conditions of 90 oC, 20/1 methanol/oleic acid molar ratio, 5 wt% catalyst and 2 h reaction time, biodiesel yield of > 87% was achieved after 10 cycles of use. At lower temperatures (40, 50 and 60 oC), biodiesel yield still reached 82 %, 93 % and 90 % after 3 cycles, respectively. The high activity of Zr-SO3H@CMC benefited from low activation energy of 24.7 KJ/mol. It shows potential application for esterification of free fatty acids or pretreatment of oils with high acid value for the green production of biodiesel
The results were published:
YT Wang, Zhen Fang*, F Zhang, Esterification of Oleic Acid to Biodiesel Catalyzed by a Highly Acidic Carbonaceous Catalyst, Catalysis Today, https://doi.org/10.1016/j.cattod.2018.06.041,  (2018).

碳基固体酸性催化剂酯化油酸制备生物柴油

最近,王一同(女)同学(中国科学院西双版纳热带植物园博士研究生,现华北理工大学教师)在方老师的指导下,通过两步法合成了碳基固体酸性催化剂,并应用于油酸酯化制备生物柴油。该研究通过简易的两步法合成高活性的具有多酸位点的碳基固体酸性催化剂,其酸度为8.45 mmol/g,可以在40-90 oC催化油酸酯化获得> 99%的生物柴油产率。在反应条件:90 oC,20/1的醇油摩尔比,5 wt%的催化剂量和2 h反应时间,催化剂循环10次,生物柴油的产率仍> 87%。在低温40-60 oC,其循环3次,生物柴油的产率分别为82 %, 93 % 和 90 %。催化剂低的活化能(24.7 KJ/mol)决定其高的活性。该催化剂在生物柴油绿色生产(酯化油酸和高酸值油脂预处理)展示非常好的应用前景。

结果发表在Catalysis Today: Yi-Tong Wang, Zhen Fang*, F Zhang,Esterification of Oleic Acid to Biodiesel Catalyzed by a Highly Acidic Carbonaceous Catalyst, Catalysis Today (Q1, IF 4.6), https://doi.org/10.1016/j.cattod.2018.06.041,  (2018).

Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives

星期六, 14 7 月, 2018

Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives

Recently, Dr. X. Kong and Prof Zhen Fang, collaborated with Profs. IS Butler (McGill, Montreal) and JA Kozinski (New Model Institute – Hereford University, UK), published a critical review paper in Green Chemistry about 5-hydroxymethylfurfural (HMF) for biofuels and chemicals. HMF is a platform chemical derived from C6 sugars, which can be transformed into various important chemicals and fuels because of the presence of C=O, C-O and furan ring functional groups. In this review, the selective tailoring of these groups in HMF to form 2,5-dimethylfuran, 2,5-dihydromethylfuran, 2,5-dihydromethyltetrahydrofuran, 5-ethoxymethylfurfural, 1,6-hexanediol, long-chain alkanes, 3-(hydroxy-methyl)cyclopentanone, p-xylene, 2,5-diformylfuran, 2,5-furandicarboxylic acid and maleic anhydride will be described to gain more insight into its transformations under various conditions. The focus of the review is on the mechanisms of the catalytic processes and potential design strategies for future catalysts. The activation of the functional groups and the key challenges involved in the precise design of bifunctional catalysts are highlighted. Some examples of “one-pot” transformations of fructose to various chemicals using the HMF platform are also presented.

Related results were published:

  1. X Kong, YF Zhu, Zhen Fang*, JA Kozinski, IS Butler, LJ Xu, H Song, XJ Wei, Catalytic Conversion of 5-Hydroxymethylfurfural to Some Value-Added Derivatives, Green Chemistry, 20, 3657-3682 (2018) (Critical Review).

 The catalytic mechanisms and catalyst design strategies for 5-hydroxymethylfural conversion.(5-羟甲基糠醛转化的催化机理和催化剂设计策略)

————————–

我院生物能源组孔晓博士在Green Chemistry期刊发表综述

 催化转化5-羟基甲基糠醛为生物燃料和高附加值的化合物

 最近,国际学术期刊Green Chemistry(影响因子8.6,第一署名单位为南京农业大学,第一作者为孔晓,通讯作者为方真教授),发表了生物能源组和加拿大麦吉尔大学IS Butler 教授以及英国赫里福郡大学JA Kozinski教授合作的生物燃料综述文章。

孔晓博士在文中综述了5-羟基甲基糠醛(HMF)催化转化为生物燃料,总结了其转化的催化机理和催化剂设计策略。 HMF是一种衍生自C6糖的平台化学品。由于存在C=O,C-O和呋喃类官能团,所以它可以转化为各种重要的化学品和燃料。在这篇综述中,有选择性地调整这些在HMF中的官能团来形成2,5-二甲基呋喃、2,5-二氢甲基呋喃、2,5-二氢甲基四氢呋喃、5-乙氧基甲基呋喃、1,6-己二醇、长链烷烃、3-(羟甲基)环戊酮、对二甲苯、2,5-二甲酰基呋喃、2,5-呋喃二甲酸和马来酸酐,以能够更加深入地了解HMF在各种条件下的转化。本综述的重点是催化过程的机理和未来催化剂的潜在设计策略。该文强调了官能团的活化作用和双官能团催化剂精确设计中所面临的关键挑战。还介绍了使用HMF平台分子将果糖“一锅法”转化为各种化学品的一些实例。

详情可见:

  1. X Kong, YF Zhu, Zhen Fang*, JA Kozinski, IS Butler, LJ Xu, H Song, XJ Wei, Catalytic Conversion of 5-Hydroxymethylfurfural to Some Value-Added Derivatives, Green Chemistry20, 3657-3682 (2018) (Critical Review).

One-step production of biodiesel from oil with high acid value by magnetic acid-base amphoteric nanoparticles

星期三, 20 6 月, 2018

One-step production of biodiesel from Jatropha oils with high acid value by magnetic acid-base amphoteric nanoparticles

Alkaline oxides concerted with acidic -COOFe structure, for the one-pot esterification and transesterification of high AV Jatropha oils without saponification. Zn8@Fe-C400 achieved nearly 100% Jatropha biodiesel yield at 160 oC within 4 h, and was used for at least 10 cycles with biodiesel yield of >94.3% at AV of 6.3 mg KOH/g.(磁性酸碱两性催化剂通过两步法合成:羧甲基纤维素钠和Fe3+螯合生成的酸性结构-COOFe将碱性氧化物包埋在催化剂的内部,煅烧步骤将部分的-COOFe结构还原成Fe3O4,为催化剂引入磁性。合成的Zn8@Fe-C400可以催化酸值为6.3 mg KOH/g的小桐子油获得100.0%的生物柴油产率,循环使用10次小桐子生物柴油的产率仍然大于94.3%)

Recently, Miss Yi-Tong Wang (PhD student from Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences) supervised by Prof. Zhen FANG has synthesized magnetic acid-base amphoteric nanoparticles. Alkaline oxides (ZnFe2O4, ferrihydrite, zincite, maghemite and magnetite) concerted with acidic -COOFe structure, benefited the one-pot esterification and transesterification of Jatropha oils with high acid value to produce biodiesel without additional pretreatment. The strong magnetism of catalyst helped catalyst separation for recycle in biodiesel production. Jatropha biodiesel yield of 100% at 160 oC within 4 h, with methanol/oil molar ratio of 40/1 and catalyst dosage of 7 wt% was achieved, while the catalyst can be cycled for at least 10 times with biodiesel yield > 94.3% at acid value of 6.3 mg KOH/g. No obvious saponification was observed during the reactions and storage.

The results were published:

YT Wang, Zhen Fang*, XX Yang, YT Yang, J Luo, K Xu, GR Bao. One-step production of biodiesel from Jatropha oils with high acid value at low temperature by magnetic acid-base amphoteric nanoparticles, Chemical Engineering Journal, 348, 929-939 (2018).

https://www.sciencedirect.com/science/article/pii/S1385894718308283

———————————————————————-

磁性酸碱两性纳米粒子催化高酸值的小桐子油在低温下一步法制备生物柴油

最近,王一同(女)同学(中国科学院西双版纳热带植物园博士研究生)在方老师的指导下,通过两步法合成了磁性酸碱两性催化剂,并应用于小桐子生物柴油的制备。

该研究通过简易的两步法合成高活性的磁性酸碱两性纳米颗粒,用于高酸值不可食用的小桐子油联合酯化和转酯化反应,一步法制备小桐子生物柴油。在低温160 oC反应4 h可以获得100.0%的生物柴油产率,通过简单的磁性分离可以循环使用10次 (产率仍然大于94.3%),展现了非常出色的工业应用能力。通过半年的常温储存,合成的小桐子生物柴油未发生皂化。

结果发表在Chemical Engineering Journal: Yi-Tong Wang, Zhen Fang*, Xing-Xia Yang, Ya-Ting Yang, Jia Luo, Kun Xu, Gui-Rong Bao. One-step production of biodiesel from Jatropha oils with high acid value at low temperature by magnetic acid-base amphoteric nanoparticles, Chemical Engineering Journal (IF6.7), 348, 929-939 (2018)。