Archive for the ‘未分类’ Category

星期日, 10 4 月, 2022

NaFeO2-Fe3O4合成生物柴油Highly stable NaFeO2-Fe3O4 composite catalyst from blast furnace dust for efficient production of biodiesel at low temperature

Recently, Dr Yi-Tong Wang (Associate Prof., College of Metallurgy and Energy, North China University of Science and Technology) and Prof. Zhen Fang published an article in Industrial Crops & Products about using highly stable NaFeO2-Fe3O4 composite catalyst from blast furnace dust for biodiesel production.

Highly stable catalysts were prepared by wet impregnation of blast furnace dust (BFD) in Na2CO3·H2O, Na2CO3·10H2O, NaHCO3 and Na2CrO4 solution and subsequent calcination of 300-600 oC. At low temperature of 65 oC for 2 h with methanol/oil molar ratio of 15/1, high biodiesel yields of 100 wt% were obtained with 7wt% Na2CO3·H2O@BFD300 and Na2CO3·H2O@BFD400 catalyst (impregnating with Na2CO3·H2O solution and calcining at 300 and 400 oC) added for the first use. Na2CO3·H2O@BFD300 catalyst exhibited outstanding stability and recyclability with biodiesel yields of 100 wt% at the fifth use (93 wt% at the twelfth use) owing to impregnated Na2CO3 reacting with Fe2O3 in dust to produce stable and active nanocomponents of NaFeO2 (32.42 nm) and magnetic nanocomponent of Fe3O4 (size of 3.14 nm and Ms of 6.16 Am2/kg) in dust existing. The study provided practical guidance for biodiesel industrial production.

Related results were published in Industrial Crops & Products:

XM Wang, YN Zeng, LQ Jiang, YT Wang*, JG Li*, LL Kang, R Ji, D Gao, FP Wang, Q Yu, YJ Wang, Zhen Fang*. Highly stable NaFeO2-Fe3O4 Composite Catalyst from Blast Furnace Dust for Efficient Production of Biodiesel at Low Temperature, Industrial Crops and Products, 182, 114937, https://doi.org/10.1016/j.indcrop.2022.114937 (2022).

Efficient production of biodiesel can be achieved with Na2CO3·H2O@BFD300 catalyst for 12 reuses with 92.56 wt% yield.使用Na2CO3·H2O@BFD300催化剂实现生物柴油高效生产,循环12次后,产率仍可达92.56 wt%。


王一同博士和方真教授在国际学术期刊Industrial Crops & Products发表学术论文:

高炉粉尘制备NaFeO2-Fe3O4复合催化剂用于生物柴油合成

最近,王一同博士(华北理工大学冶金与能源学院副教授)和方真教授在国际学术期刊Industrial Crops & Products(IF: 5.645,Q1)发表题为“高炉粉尘制备NaFeO2-Fe3O4复合催化剂用于生物柴油合成”的研究性论文。

利用Na2CO3·H2O,Na2CO3·10H2O,NaHCO3和Na2CrO4水溶液分别湿法浸渍高炉粉尘,于300-600 oC高温活化制备高稳定性催化剂。在65 oC、醇油摩尔比15/1、催化剂用量7 wt%的条件下反应2 h,Na2CO3·H2O@BFD300和Na2CO3·H2O@BFD400催化剂获得了100 wt%的产率。由于浸渍的Na2CO3和高炉粉尘中的Fe2O3反应生成稳定且有活性的纳米组分NaFeO2(32.42 nm)以及高炉粉尘中含有的磁性纳米组分Fe3O4(晶粒:3.14 nm;磁性:6.16 Am2/kg),Na2CO3·H2O@BFD300催化剂表现出优异的稳定性和可回收性,循环12次后仍可获得93 wt%的产率。该研究为生物柴油的工业化生产提供了实用指导。详情可见:

XM Wang, YN Zeng, LQ Jiang, YT Wang*, JG Li*, LL Kang, R Ji, D Gao, FP Wang, Q Yu, YJ Wang, Zhen Fang*. Highly stable NaFeO2-Fe3O4 Composite Catalyst from Blast Furnace Dust for Efficient Production of Biodiesel at Low Temperature, Industrial Crops and Products (IF 5.6), 182, 114937, https://doi.org/10.1016/j.indcrop.2022.114937 (2022).

双功能Na-Fe-Ca催化剂生物柴油Production of biodiesel at low temperature using bifunctional Na-Fe-Ca nanocatalyst from blast furnace waste

星期日, 10 4 月, 2022

Production of biodiesel at low temperature using bifunctional Na-Fe-Ca nanocatalyst from blast furnace waste

Recently, Dr Yi-Tong Wang (Associate Prof., College of Metallurgy and Energy, North China University of Science and Technology) and Prof. Zhen Fang published an article in Fuel about using highly active bifunctional Na-Fe-Ca nanocatalyst from blast furnace dust for biodiesel production.

Nanocatalysts for biodiesel production were prepared via wet impregnation of blast furnace dust (BFD) in Na2CO3 (Na-BFD) and CaCO3 (Ca-BFD) suspension solutions and calcination at 500 and 600 oC, respectively. Biodiesel yields of 100.0 wt% (Na-BFD500) and 98.3 wt% (Ca-BFD600) were achieved at 65 oC. Synthesized catalysts showed outstanding activity and recyclability, due to the transition of CaCO3, Na2CO3 and Fe2O3 to nanocrystals of NaFeO2 (29.9 nm), Ca2Fe2O5 (10.5 nm), CaO (100.1 nm) and Ca2Fe2O5 (50.0 nm). Na-BFD500 achieved 95.8 wt% biodiesel yield with 16 cycles, whereas Ca-BFD600 reached 94.1 wt% biodiesel yield with 7 cycles via magnetic separation. BFD containing convertible magnetic and active components (Fe2O3 and CaCO3) was an ideal raw material to synthesize catalyst for biodiesel production with high catalytic efficiency and easy separation. The study provided a practical utilization of industrial solid waste for biodiesel production.

Related results were published in Fuel:

YT Wang, XM Wang, D Gao, FP Wang, YN Zeng, JG Li*, LQ Jiang, Q Yu, R Ji, LL Kang, YJ Wang, Zhen Fang*, Efficient Production of Biodiesel at Low Temperature Using Highly Active Bifunctional Na-Fe-Ca Nanocatalyst from Blast Furnace Waste, Fuel, 322, 124168, https://doi.org/10.1016/j.fuel.2022.124168 (2022).

Nanocatalysts produced by impregnation and calcination transesterified soybean oil to biodiesel with 100 wt% yield. 通过浸渍和煅烧制备了纳米催化剂用于催化豆油酯交换制备生物柴油,产率高达100 wt%。


高炉粉尘制备双功能Na-Fe-Ca纳米催化剂用于生物柴油合成

最近,王一同博士(华北理工大学冶金与能源学院副教授)和方真教授在国际学术期刊Fuel(IF: 6.609,Q1)发表题为“高炉粉尘制备双功能Na-Fe-Ca纳米催化剂用于生物柴油合成”的研究性论文。

利用Na2CO3和CaCO3水溶液分别湿法浸渍高炉粉尘,于500 ℃和600 oC高温活化制备纳米催化剂(Na-BFD500和Ca-BFD600),用于催化豆油制备生物柴油。催化剂经高温煅烧后,CaCO3、Na2CO3和Fe2O3晶体转变为纳米NaFeO2(29.9 nm)、Ca2Fe2O5(10.5 nm)、CaO(100.1 nm)和Ca2Fe2O5(50 nm)晶体,表现出优异的催化活性和可循环利用特性。Na-BFD500催化豆油制备生物柴油的产率达到100.0 wt%,循环16次后仍可获得95.8 wt%的产率,而Ca-BFD600催化豆油制备生物柴油的产率达到98.3 wt%,循环7次后仍可获得94.1 wt%的产率。该研究为工业固体废物用于生物柴油制备提供了新思路。详情可见:

YT Wang, XM Wang, D Gao, FP Wang, YN Zeng, JG Li*, LQ Jiang, Q Yu, R Ji, LL Kang, YJ Wang, Zhen Fang*, Efficient Production of Biodiesel at Low Temperature Using Highly Active Bifunctional Na-Fe-Ca Nanocatalyst from Blast Furnace Waste, Fuel (IF 6.6), 322, 124168, https://doi.org/10.1016/j.fuel.2022.124168 (2022).

捐书: 20 books were donated by Prof. Zhen Fang

星期一, 14 2 月, 2022

捐书: 20 books were donated by Prof. Zhen Fang

On Feb. 8, 2022, Prof. Zhen Fang donated 20 books edited/authored by him in renewable energy and green technologies to his hometown in Fujian:

  1. 1.P Bartocci, F Fantozzi, Q Yang, HP Yang, O Masek, YJ Yan, Zhen Fang, L Rigamonti, (Editors), Sustainable Biomass and Waste Conversion, Elsevier, 2022.
  2. 2.Zhen Fang, RL Smith, Jr., LJ Xu (Editors), Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste, Springer, Heidelberg Berlin, 2021.
  3. 3.Zhen Fang, RL Smith, Jr., LJ Xu (Editors), Production of Biofuels and Chemicals with Pyrolysis, Springer, Heidelberg Berlin, 2020.
  4. 4.YT Wang, Zhen Fang (Editors), Catalytic Biomass to Renewable Biofuels and Biomaterials, MDPI (Basel, Switzerland), 2020.
  5. 5.Zhen Fang, RL Smith, Jr., XF Tian (Editors), Production of Materials from Sustainable Biomass Resources, Springer, Heidelberg Berlin, 2019.
  6. 6.Zhen Fang, RL Smith, Jr., H Li (Editors), Production of Biofuels and Chemicals with Bifunctional Catalysts, Springer, Heidelberg Berlin, 2017.
  7. 7.Zhen Fang, RL Smith, Jr., X Qi (Editors), Production of Platform Chemicals from Sustainable Resources, Springer, Heidelberg Berlin, 2017.
  8. 8.Zhen Fang, RL Smith, Jr.(Editors), Production of Biofuels and Chemicals from Lignin, Springer, Heidelberg Berlin, 2016.
  9. 9.Zhen Fang, RL Smith, Jr., X Qi (Editors), Production of Hydrogen from Renewable Resources, Springer, Heidelberg Berlin, 2015.
  10. 10.Zhen Fang, RL Smith, Jr., X Qi (Editors), Production of Biofuels and Chemicals with Microwave, Springer, Heidelberg Berlin, 2015.
  11. 11.Zhen Fang, RL Smith, Jr., X Qi (Editors), Production of Biofuels and Chemicals with Ultrasound, Springer, Heidelberg Berlin, 2015.
  12. 12.Zhen Fang, C Xu (Editors), Near-critical and Supercritical Water and Their Applications for Biorefineries, Springer, Heidelberg Berlin, 2014.
  13. 13.Zhen Fang, RL Smith, Jr., X Qi (Editors), Production of Biofuels and Chemicals with Ionic Liquids, Springer, Heidelberg Berlin, 2014.
  14. 14.Zhen Fang (Editor), Liquid, Gaseous and Solid Biofuels – Conversion Techniques, InTech, London, UK, 2013.
  15. 15.Zhen Fang (Editor), Biofuels – Economy, Environment and Sustainability, InTech, London, UK, 2013.
  16. 16.Zhen Fang (Editor), Pretreatment Techniques for Biofuels and Biorefineries, Springer, Berlin Heidelberg, 2013.
  17. 17.Zhen Fang (Editor), Biodiesel – Feedstocks, Production and Applications, InTech, London, UK, 2013.
  18. 18.J. M. Marchetti, Zhen Fang (Editors), Biodiesel: Blends, Properties and Applications, Nova Science Publishers, Inc., New York, 2011.
  19. 19.Zhen Fang (Author), Rapid Production of Micro- and Nano-particles Using Supercritical Water, Springer, Berlin Heidelberg, 2010.
  20. 20.Zhen Fang (Author), Complete Dissolution and Oxidation of Organic Wastes in Water, VDM Verlag Dr. Müller, Saarbrücken, Germany, 2009.

hdrpl

28日,方真教授档案图书捐赠仪式在泰宁县档案馆举行。

县领导黄维云出席仪式并讲话。

会上,县领导对方真先生的到来表示热忱的欢迎,对方院士热心捐赠珍贵的图书档案资料表示最诚挚的感谢!此次,方真院士捐赠的院士证书及他编著的20册珍贵图书档案资料(其中2部随后寄送),将进一步丰富泰宁县档案馆馆藏,助力科技事业的发展。

翻译:

1.P Bartocci,F Fantozzi,Q Yang,HP Yang,O Masek,YJ Yan,方真,L Rigamonti,(编著),《可持续生物质和废弃物转化》,爱思唯尔出版社,2022

2.方真,RL Smith,Jr.,徐禄江(编著),《可持续再生有机固体废物生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2021

3.方真,RL Smith,Jr.,徐禄江(编著),《热解生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2020

4.王一同,方真 (编著),《催化生物质转化为可再生生物燃料和生物材料》,MDPI(瑞士巴塞尔)出版社,2020

5.方真,RL Smith,Jr.,田霄飞(编著),《可持续生物质资源生产材料》,柏林•海德堡,斯普林格出版社,2019

6.方真,RL Smith,Jr.,李虎(编著),《双功能催化剂生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2017

7.方真,RL Smith,Jr.,漆新华(编著),《可持续资源生产平台化学品》,柏林•海德堡,斯普林格出版社,2017

8.方真,RL Smith,Jr.(编著),《木质素生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2016

9.方真,RL Smith,Jr.,漆新华(编著),《可再生资源生产氢气》,柏林•海德堡,斯普林格出版社,2015

10.方真,RL Smith,Jr.,漆新华(编著),《利用微波生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2015

11.方真,RL Smith,Jr.,漆新华(编著),《利用超声波生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2015

12.方真,徐春保(编著),《近临界水和超临界水及其在生物炼制中的应用》,柏林•海德堡,斯普林格出版社,2014

13.方真,RL Smith,Jr.,漆新华(编著),《利用离子液体生产生物燃料和化学品》,柏林•海德堡,斯普林格出版社,2014

14.方真(编著),《液体、气体和固体生物燃料-转化技术》,InTech出版社,英国,伦敦,2013

15.方真(编著),《生物燃料-经济、环境和可持续性》,InTech出版社,英国,伦敦,2013

16.方真(编著),《生物燃料和生物精炼的预处理技术》,柏林•海德堡,斯普林格出版社,2013

17.方真(编著),《生物柴油-原料、生产和应用》,InTech出版社,英国,伦敦,2013

18.JM Marchetti,方真(编著),《生物柴油:混合物、性质和应用》,Nova Science Publishers出版社,纽约,2011

19.方真(作者),《超临界水快速制备微米和纳米颗粒》,柏林•海德堡,斯普林格出版社,2010

20.方真(作者),《水中有机废物的完全溶解和氧化》,德国,萨尔布吕肯,VDM Verlag Dr. Müller出版社,2009

碱颗粒球磨预处理: Efficient saccharification of wheat straw pretreated by solid particle-assisted ball milling with waste washing liquor recycling

星期日, 16 1 月, 2022

碱颗粒球磨预处理: Efficient saccharification of wheat straw pretreated by solid particle-assisted ball milling with waste washing liquor recycling

Recently, PhD student Miss Xiao-le Liu supervised by Prof. Zhen Fang published a research article in Bioresource Technology about ball milling pretreatment with NaOH solid particles for enzymatic hydrolysis of wheat straw.

Wheat straw was pretreated using ball milling (BM) promoted by solid particles (NaOH, NaCl, citric acid). NaOH showed the best synergistic interaction effect, due to the breakage of β-1,4-glycosidic bonds among cellulose molecules by the alkali solid particles induced by BM. NaOH-BM pretreatment decreased the straw crystallinity from 46% to 21.4% and its average particle size from 398.3 to 50.6 μm in 1 h. After 4 h milling, the reducing-end concentration of cellulose increased by 3.8 times from 12.5 to 60.2 μM, with glucose yield increased by 2.1 times from 26.6% to 82.4% for 72 h enzymatic hydrolysis at cellulase loading of 15 FPU/g dry substrate. The pretreatment washing liquor was recycled for the re-treatment of partially pretreated biomass at 121 °C for 30 min, resulting in 99.4% glucose yield by enzymatic hydrolysis. BM assisted with alkali particles was an effective approach for improving biomass enzymatic saccharification.

Related results were published in Bioresource Technology:

XL Liu, CY Dong, SY Leu, Zhen Fang* (Supervisor), ZD Miao, Efficient Saccharification of Wheat Straw Pretreated by Solid Particle-Assisted Ball Milling with Waste Washing Liquor Recycling, Bioresource Technology, 347, 126721, https://doi.org/10.1016/j.biortech.2022.126721 (2022).

Wheat straw was ball milling pretreated with NaOH particles for 4 h with 82.4% glucose yield after 72 h enzymatic hydrolysis. The pretreatment washing liquor was recycled for the re-treatment of partially pretreated biomass at 121 °C for 30 min, resulting in 99.4% glucose yield. (球磨辅助NaOH颗粒预处理小麦秸秆4 h。酶水解72 h,预处理后小麦秸秆酶解率为82.4%。预处理后的水洗液循环利用,在121°C下,对预处理4 h后的小麦秸秆再预处理30 min,酶解率提高到99.4%)

 

球磨辅助固体颗粒预处理小麦秸秆的高效糖化及水洗废液的循环利用

最近,博士生刘小乐(女)在方真教授的指导下,在国际学术期刊Bioresource Technology (Q1, IF 9.6)发表一篇关于球磨辅助NaOH颗粒预处理小麦秸秆用于酶解的研究性论文。

通过球磨辅助固体颗粒(NaOH、NaCl,柠檬酸)预处理小麦秸秆。其中,球磨辅助NaOH颗粒预处理的协同作用最好,这可能是由于球磨可以使NaOH破坏纤维素分子间的β-1,4-糖苷键。球磨辅助NaOH颗粒预处理1 h后,纤维素结晶度从46%降为21.4%,平均粒径从398.3 μm降到50.6 μm。球磨辅助NaOH颗粒预处理4 h后,在15 FPU/g干底物的条件下酶解72 h,酶解率从26.6%提高到82.4%,酶解率较原始小麦秸秆提高2.1倍。对预处理后的水洗液进行循环利用,在121 ℃下对预处理4 h后的秸秆再预处理30 min,酶解率提高为99.4%。

结果发表在Bioresource Technology:

XL Liu, CY Dong, SY Leu, Zhen Fang* (Supervisor), ZD Miao, Efficient Saccharification of Wheat Straw Pretreated by Solid Particle-Assisted Ball Milling with Waste Washing Liquor Recycling, Bioresource Technology, 347, 126721, https://doi.org/10.1016/j.biortech.2022.126721 (2022).

 

还原胺化Synergistic catalysis of Co-Zr/CNx bimetallic nanoparticles enables reductive amination of bio-based levulinic acid

星期日, 9 1 月, 2022

还原胺化Synergistic catalysis of Co-Zr/CNx bimetallic nanoparticles enables reductive amination of bio-based levulinic acid

Recently, PhD student Mr Pei-dong Wu supervised by Profs. Hu Li and Zhen Fang published a research article in Advanced Sustainable Systems about bimetallic synergistic catalysis for reductive amination of bio-based levulinic acid.

Bimetallic synergy and carbon-nitrogen doping can contribute to enhanced catalytic activity due to the strong electronic state and unique geometrical structure. In this work, a series of biomass-derived Co-M bimetallic C-N doped catalysts (Co-M@Chitosan-X; M = Zr, Ni, Fe, Cu, In; X denotes the molar percentage of M) were prepared via simple oil bath reflow and annealing. The Co-Zr@Chitosan-X catalysts were determined to contain alloy (Co-Zr), metal-carbon bond (Co-C, Zr-C), metal-nitrogen bond (Co-N, Zr-N) and metal oxide (Co3O4, ZrO2) through a series of characterizations, in which graphite-coated alloys and metal oxides were catalytically active species. The doping of the second metal results in a significant enhancement for the number of active sites in the catalyst, and the d-band center is shifted toward a deviation from the Fermi energy level. Among the tested catalysts, Co-Zr@Chitosan-20 exhibited superior catalytic activity for the reductive amination of bio-based levulinic acid to 5-methyl-2-pyrrolidone in 99.3% selectivity and 92.8% yield. This non-noble metal bimetallic synergistic catalytic protocol opens an avenue for efficiently producing biomass-derived nitrogenous chemicals.

Related results were accepted in Advanced Sustainable Systems:

Pei-dong Wu, Hu Li *, Zhen Fang *, Synergistic catalysis of Co-Zr/CNx bimetallic nanoparticles enables reductive amination of bio-based levulinic acid, 2022, 2100321. https://doi.org/10.1002/adsu.202100321

Non-noble bimetallic nanoparticles (Co-Zr/CNx) were efficient for direct conversion of bio-based levulinic acid (LA) to 5-methyl-2-pyrrolidone (5-MP) in water at 130 °C. Synergistic role was found in the reductive amination process with high activity over a long period of time in one-pot reactions. 非贵金属双金属纳米粒子(Co-Zr/CNx)在130℃的水中能有效地将生物基乙酰丙酸(LA)直接转化为5-甲基-2-吡咯烷酮(5-MP)。在单锅反应中还原胺化过程中发现双金属催化剂长时间具有高活性。


博士生吴培栋在李虎教授和方真教授的指导下,在国际学术期刊Advanced Sustainable Systems发表研究性论文:

 

具有协同作用的Co-Zr/CNx双金属纳米颗粒催化

还原胺化生物质基乙酰丙酸

最近,博士生吴培栋在李虎教授和方真教授的指导下,在国际学术期刊Advanced Sustainable Systems (Q1; Impact factor: 6.271)上发表了一篇关于双金属协同催化生物基乙酰丙酸还原胺化的研究性论文。

双金属协同作用和碳氮掺杂有助于提高催化剂的催化活性,因为掺杂后催化剂的强电子态和独特的几何结构。在这项工作中,通过简单的油浴回流和高温退火制备了一系列生物质衍生的双金属碳氮掺杂催化剂(Co-M@Chitosan-X;M = Zr, Ni, Fe, Cu, In;X表示M的摩尔百分比)。通过一系列的表征,Co-Zr@Chitosan-X催化剂的组分被确定为含有合金(Co-Zr)、金属-碳键(Co-C、Zr-C)、金属-氮键(Co-N、Zr-N)和金属氧化物(Co3O4、ZrO2),其中石墨包覆的合金和金属氧化物是催化活性物种。第二种金属的掺入使催化剂的活性位点数量明显增加,并且d带中心向偏离费米能级的方向移动。在催化剂活性测试中,Co-Zr@Chitosan-20在还原胺化生物基乙酰丙酸为5-甲基-2-吡咯烷酮的过程中表现出卓越的催化性能,其中选择性为99.3%,收率为92.8%。这种非贵金属的双金属协同催化作用为有效生产生物质衍生的含氮化学品开辟了一条新的途径。

详情可见:

Pei-dong Wu, Hu Li *, Zhen Fang *. Synergistic catalysis of Co-Zr/CNx bimetallic nanoparticles enables reductive amination of bio-based levulinic acid, 2022, 2100321. https://doi.org/10.1002/adsu.202100321