A series of highly-downloaded books in biofuels by Prof. Zhen Fang were published

13 4 月, 2015

 

方真 封底2

A series of highly-downloaded books in biofuels by Prof. Zhen Fang were published

2012, Springer launched a book series entitled, “Biofuels and Biorefineries” with Professor Zhen Fang serving as Editor-in-Chief.

Professor Zhen FANG cooperates with the Editorial Board, comprising five world-leaders in biofuels and biorefineries:

Prof. Liang-shih Fan, Ohio State Univ., USA;

Prof. John R. Grace, Univ. of British Columbia, Canada;

Prof. Yonghao Ni, Univ. of New Brunswick, Canada;

Prof. Norman R. Scott, Cornell Univ., USA;

Prof. Richard L. Smith, Jr., Tohoku Univ., Japan,

for this book series.

The editorial team is committed to organize and assist authors to publish a number of biomass-related books with the highest quality that will accelerate the growth in this important area, aimed at the publication of at least two volumes per year.

The book series will be focusing on all aspect related with biomass production, biofuels, bioproducts, chemicals, biomaterials, food and pharmaceutical products, energy planning and policy, as well as processing technologies.

The book series will be the powerful and integrative source of biomass, bioenergy, biofuels, bioproducts and biorefinery for scientists, students, policy-makes and engineers to reflect the explosive growth in this interdisciplinary area.

The book series will be operating with a strict refereeing procedure to ensure that the best quality of books and chapters is published.

The selected books published were listed below:

1.Zhen Fang*, RL Smith, Jr, XH Qi (Editors), Production of Biofuels and Chemicals with Microwave, Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, ISBN 978-94-017-9611-8, hardcover, 300 pages, 2015. (5665 chapter downloads on April 18 2015).

At: http://www.springer.com/energy/renewable+and+green+energy/book/978-94-017-9611-8

Conversion of biomass into chemicals and biofuels is an active research and development area as trends move to replace traditional fossil fuels with renewable resources. By integrating processing methods with microwave and ultrasound irradiation into biorefineries, the time-scale of many operations can be greatly reduced while the efficiency of the reactions can be remarkably increased so that process intensification can be achieved. “Production of Biofuels and Chemicals with Microwave” and “Production of Biofuels and Chemicals with Ultrasound” are two independent volumes in the Biofuels and Biorefineries series that take different, but complementary approaches for the pretreatment and chemical transformation of biomass into chemicals and biofuels.

The volume “Microwave” provides current research advances and prospects in theoretical and practical aspects of microwave irradiation including properties, effects and temperature monitoring, design of chemical reactors, synergistic effects on combining microwave, ultrasound, hydrodynamic cavitation and high-shear mixing into processes, chemical and catalytic conversion of lignin into chemicals, pyrolysis and gasification, syngas production from wastes, platform chemicals, algal biodiesel, cellulose-based nanocomposites, lignocellulosic biomass pretreatment, green chemistry metrics and energy consumption and techno-economic analysis for a catalytic pyrolysis facility that processes pellets into aromatics. Each of the 12 chapters has been peer-reviewed and edited to improve both the quality of the text and the scope and coverage of the topics. Both volumes “Microwave” and “Ultrasound” are references designed for students, researchers, academicians and industrialists in the fields of chemistry and chemical engineering and include introductory chapters to highlight present concepts of the fundamental technologies and their application.

2.Zhen Fang*, RL Smith, Jr, XH Qi (Editors), Production of Biofuels and Chemicals with Ultrasound, Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, ISBN 978-94-017-9623-1, hardcover, 415 pages, 2015. (3857 chapter downloads on April 18 2015).

At: http://www.springer.com/energy/renewable+and+green+energy/book/978-94-017-9623-1

The volume “Ultrasound” provides current research advances and prospects in mechanistic principles of acoustic cavitation in sonochemistry, physical and chemical mechanisms in biofuel synthesis, reactor design for transesterification and esterification reactions, lipid extraction from algal biomass, microalgae extraction, biodiesel and bioethanol synthesis, practical technologies and systems, pretreatment of biomass waste sources including lignocellulosic materials, manures and sludges for biogas production, vibration-assisted pelleting, combined chemical-mechanical methods, valorization of starch-based wastes and  techno-economic methodology.  Each of the 12 chapters has been peer-reviewed and edited to improve both the quality of the text and the scope and coverage of the topics.  Both volumes “Ultrasound” and “Microwave” are references designed for students, researchers, academicians and industrialists in the fields of chemistry and chemical engineering and include introductory chapters to highlight present concepts of the fundamental technologies and their application.

3.Zhen Fang*, C Xu (Editors), Near-critical and Supercritical Water and Their Applications for Biorefineries, Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, ISBN 978-94-017-8922-6, hardcover, 490 pages, 2014. (7957 chapter downloads on April 18 2015).

At: http://www.springer.com/energy/renewable+and+green+energy/book/978-94-017-8922-6

The book provides fundamental chemistry and properties of near-critical water (NCW) and supercritical water (SCW), criteria and challenges/solutions in reactor design for NCW and SCW processes, and up-to-date reviews and practice of a wide range of their applications in bio refineries including: production of hydrochars from biomass, SCW oxidation (SCWO) for waste treatment, SCW gasification (SCWG) of biomass and waste for hydrogen and methane production, hydrothermal liquefaction of biomass, production of chemicals and SCWO of biofuels for energy. It also presents techno-economic analysis of hydrogen production via SCWG of biomass. The book will be highly essential for both academic researchers and industrial practitioners for developing novel bio refinery technologies and processes employing NCW or SCW for treatment of various organic waste streams and production of bio-energy and bio-based chemicals from bio-renewable resources.

4.Zhen Fang*, RL Smith, Jr, XH Qi (Editors), Production of Biofuels and Chemicals with Ionic Liquids, Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, ISBN 978-94-007-7710-1, hardcover, 353 pages, 2014. (Highly downloaded: 15184 chapter downloads on April 18 2015).

At: http://www.springer.com/energy/renewable+and+green+energy/book/978-94-007-7710-1

The application of ionic liquids to biomass for producing biofuels and chemicals will be one of the hot research areas during the next decade due to the fascinating properties of these versatile group of solvents that allow them to dissolve lignocellulosic materials. The present text provides up-to-date fundamentals, state-of-the-art reviews, current assessments and prospects in this area, including aspects of pretreatment, fermentation, biomass dissolution, cellulose transformation, reaction kinetics and physical properties, as well as the subsequent production of biofuels and platform chemicals such as sugars, aldehydes and acids. Auxiliary methods such as catalysis, microwave and enzymatic techniques used in the transformations are covered. Both researchers and practitioners are certain to find a wealth of information in the individual chapters, which were written by experts in the field to provide an essential basis for assessing possible pretreatment and transformation routes of biomass using ionic liquids, and for developing new methods and chemical processes.

Other books:

5.Zhen Fang* (Editor), Biofuels – Economy, Environment and Sustainability, InTech – Open Access, ISBN 978-953-51-0950-1, hardcover, 386 pages, 2013. (28591 chapter downloads for Jan 2013-April 2015).

At: http://www.intechopen.com/books/biofuels-economy-environment-and-sustainability

Biofuels are gaining public and scientific attention driven by high oil prices, the need for energy security and global warming concerns. There are various social, economic, environmental and technical issues regarding biofuel production and its practical use. This book is intended to address these issues by providing viewpoints written by professionals in the field and the book also covers the economic and environmental impact of biofuels.

This text includes 14 chapters contributed by experts around world on the economy, evironment and sustainability of biofuel production and use. The chapters are categorized into 3 parts:

PART 1: Feedstocks; PART 2: Biofuels; PART 3: Environment

This book overviews social, economic, environmental and sustainable issues by the use of biofuels. It should be of interest for students, researchers, scientists and technologists in biofuels.

6.Zhen Fang* (Editor), Liquid, Gaseous and Solid Biofuels – Conversion Techniques, InTech – Open Access, ISBN 978-953-51-1050-7, hardcover, 541 pages, 2013. (41316 chapter downloads for March 2013-April 2015).

At: http://www.intechopen.com/books/liquid-gaseous-and-solid-biofuels-conversion-techniques

Biomass is a renewable, unevenly geographically distributed resource that can be considered sustainable and carbon-neutral if properly managed. It can be converted to high-qualified gaseous, liquid and solid biofuels with many techniques. This book focuses on the latest conversion techniques for the production of liquid and gaseous biofuels that should be of interest to the chemical scientists and technologists.

This book includes 18 chapters contributed by experts around world on conversion techniques. The chapters are categorized into 2 parts:

PART 1: Liquids; PART 2: Gases and other products

This book offers reviews of state-of-the-art conversion techniques for biofuels. It should be of interest for students, researchers, scientists and technologists in the engineering and sciences fields.

7.Zhen Fang* (Editor), Pretreatment Techniques for Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, ISBN 978-3-642-32734-6, hardcover, 476 pages, 2013(Among the top 25% most downloaded eBooks in 2013; 25714 chapter downloads on April 18 2015).

At: http://www.springer.com/engineering/energy+technology/book/978-3-642-32734-6

This book includes 19 chapters contributed by the world’s leading experts on pretreatment methods for biomass. It extensively covers the different types of biomass (e.g. molasses, sugar beet pulp, cheese whey, sugarcane residues, palm waste, vegetable oil, straws, stalks and wood), various pretreatment approaches (e.g. physical, thermal, chemical, physicochemical and biological) and methods that show the subsequent production of biofuels and chemicals such as sugars, ethanol, extracellular polysaccharides, biodiesel, gas and oil. In addition to traditional methods such as steam, hot-water, hydrothermal, diluted-acid, organosolv, ozonolysis, sulfite, milling, fungal and bacterial, microwave, ultrasonic, plasma, torrefaction, pelletization, gasification (including biogas) and liquefaction pretreatments, it also introduces and discusses novel techniques such as nano and solid catalysts, organic electrolyte solutions and ionic liquids.

This book offers a review of state-of-the-art research and provides guidance for the future paths of developing pretreatment techniques of biomass for biofuels, especially in the fields of biotechnology, microbiology, chemistry, materials science and engineering. It intends to provide a systematic introduction of pretreatment techniques. It is an accessible reference work for students, researchers, academicians and industrialists in biorefineries.

8.Zhen Fang* (Editor), Biodiesel – Feedstocks, Production and Applications, InTech – Open Access, ISBN 978-953-51-0910-5, hardcover, 487 pages, 2013. (41813 chapter downloads for Dec 2012-April 2015).

At: http://www.intechopen.com/books/biodiesel-feedstocks-production-and-applications

Biodiesel is renewable, biodegradable, nontoxic and carbon-neutral. Biodiesel production has been commercialized in Europe and United States, and its use is expanding dramatically worldwide.  Although there are many books that focus on biodiesel, there is the need for a comprehensive text that considers development of biodiesel systems from the production of feedstocks and their processing technologies to the comprehensive applications of both by-products and biodiesel.

This book includes 17 chapters contributed by experts around world on biodiesel. The chapters are categorized into 4 parts:

PART 1: Feedstocks; PART 2: Biodiesel production; PART 3: By-product applications; PART 4: Biodiesel applications in engines

This book offers reviews of state-of-the-art research and applications on biodiesel. It should be of interest for students, researchers, scientists and technologists in biodiesel.

 9.JM Marchetti, Zhen Fang (Editors), Biodiesel: Blends, Properties and Applications (hardback). New York: Nova Science Publishers, Inc., ISBN 13: 9781613246603 ISBN 10: 1613246609, 379 pages, Sep. 2011.

At: https://www.novapublishers.com/catalog/product_info.php?products_id=21023

Biodiesel, which consists of long-chain fatty acid methyl esters (FAME) obtained from renewable lipids such as those in vegetable oils or animal fat can be used as both an alternative fuel and an additive for petroleum diesel. This book gathers research from across the globe in the study of biodiesel blends, properties and applications. Topics discussed include biodiesel purification methods; exhaust emissions study of biodiesel operated garbage trucks; the heterogeneous catalyst for the transesterification of triglycerides into biodiesel; valorization of wastes and by-products derived from biodiesel manufacturing and biodiesel production using cation-exchange resin as heterogeneous acid catalyst.

10.Zhen Fang* (Author), Rapid Production of Micro- and Nano-particles Using Supercritical Water, Springer-Verlag, Heidelberg Berlin, ISBN: 978-3-642-12986-5, hardcover, 120 pages, August 2010. (2810 chapter downloads on April 18 2015).

At: http://www.springer.com/materials/nanotechnology/book/978-3-642-12986-5

This book shows how to use supercritical water (SCW) to synthesize nano- and micro- oxides, inorganic salts and metal particles and its recent advancement. Also polymer/biomass particles can be produced by using the method of precipitation of solutes from SCW. The particles can be used as catalysts for biomass conversions, materials in ceramics & electronic devices and composite materials. Particles are easily produced continuously in a flow reactor in short reaction times or synthesized in a batch reactor in long reaction times. Besides the synthesis process, the book also present studies of the properties of these materials. The size, size distribution, crystal growth & structure, and morphology of particles produced by supercritical water can be controlled by the feed concentrations, pH, pressures, temperatures, heating & cooling rates, organic modifications, reducing or oxidizing atmospheres, flow rates and reaction times.

11.Zhen Fang* (Author), Complete Dissolution and Oxidation of Organic Wastes in Water, VDM Verlag Dr. Müller, Saarbrücken, Germany, ISBN: 9783639144246, paperback, 192 pages, April 2009.

At: http://www.amazon.com/Complete-dissolution-oxidation-organic-wastes/dp/3639144244

This book is about using supercritical water (SCW) process to dissolve organic wastes, and subsequent using oxygen to completely destroy the wastes by homogeneous oxidation. First, properties of SCW were introduced, and its peculiar properties were used to dissolve organics for oxidation. Phase behavior of pure organics were studied in an optical micro- reactor diamond anvil cell (DAC) coupled with optical & FT-IR microscopes. Oxidation experiments in SCW were performed in larger batch and flow reactors for complex wastes. From the visual observations in the DAC, homogeneous phases with water were found for cellulose, naphthalene, benzo(a) pyrene and polystyrene. Complete dissolution of decachlorobiphenyl occurred only when O2/Na2CO3 was present. The homogeneous conditions were used for the oxidation of a complex De-inking sludge waste that was mainly composed of the above pure organics and heavy metals (Pb, Cr, Cd) in larger reactors. It was found that all organics in the sludge could be almost completely oxidized. The heavy metal salts were effectively removed by precipitation to insoluble oxides and salts with little leachability.

12.Upcoming! Zhen Fang*, RL Smith, Jr, XH Qi (Editors), Hydrogen production from renewable resources, Springer Book Series – Biofuels and Biorefineries, 14 Chapters, hardcover, contract-signed, Expected published in 2015.
—————————————————

Short Bio

Zhen Fang, Professor in Bioenergy; Inventor of Fast Hydrolysis Process (US patent#: 8268126); Editor-in-Chief, Springer Book Series – Biofuels and Biorefineries; Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden. He is also adjunct full Professor of Life Sciences, University of Science and Technology of China.

He has background in both bioenergy (PhD, Agr. Eng. China Agr. Univ. 1991) and nanotechnology (PhD, Mat.Eng. McGill, 2003).

He has 24 years in bioenergy, more than 13 years in hydrothermal, nanotechnology and diamond anvil cell techniques of international research experiences at top universities and institutes around the world (China, Canada, Japan and Spain). He found that hot-water can completely dissolve and hydrolyze cellulose that was published in I&EC Research, and was further selected as the “95 Most-Cited I&EC Research Publications” (cites: 355 from Scopus). He invented a technique to completely dissolve and fast hydrolyze wood in hot-water that may open up a new field in refining wood solution (US patent#: 8268126). He has 174 scientific publications (papeprs in journals and conference proceedings, reports, books and book chapters) and patents, including more than 90 papers (Scopus-indexed, Scopus Author ID: 7402681505), published in the top international journals in the areas of energy and chemical engineering. The total cites are >2000 times, H index 23 for his papers. He is listed in “2014 Most Cited Chinese Researchers” in energy (Elsevier-Scopus). He wrote 3 books (2 in English), 10 book chapters, 29 papers in refereed conference proceedings and 7 reports, edited 10 books (in English), gave 32 keynote & invited lectures and 27 oral presentations & posters, and filed 27 Chinese, 3 US and 3 international PCT invention patents (19 Chinese and 1 US patents were authorized), and founded a spin-off company in New York to transfer his tech. He won Yunnan governor’s friendship award, serving as Editor-in-Chief, Springer Book Series – Biofuels and Biorefineries; Editor-in-Chief, Journal of Technology Innovations in Renewable Energy; associate editor, Biotechnology for Biofuels (Impact factor 6.2, Highest IF in Biofuels);and 9 editorial board members of international journals (e.g., Biofuels, Bioproducts and Biorefining -Biofpr, IF 4.3; Energy, Sustainability and Society-a Springer open journal).

Biodiesel production directly from oils with high acid value by magnetic Na2SiO3@Fe3O4/C catalyst and ultrasound

17 3 月, 2015

Biodiesel production by transesterification with homogeneous catalysts (e.g, sodium methoxide, sodium or potassium hydroxide) is one of the most common methods, but it is difficult to recycle due to they are dissolved in methanol and glycerol mixture. So, researchers have focused on finding suitable heterogeneous solid catalysts, such as K2CO3 supported activated carbon, CaO, Sr/MgO, MnO and TiO, to replace homogeneous liquid catalysts. However, solid base catalysts are easy to deactivate when low qualified oils with high acid value (AV) are used as raw materials due to soap formation.
Mr. Zhang Fan, a PhD student, under the guidance of Professor Zhen Fang in Xishuangbanna Tropical Botanical Garden (CAS), prepared cheap and active magnetic heterogeneous catalyst (Na2SiO3@Fe3O4/C) for the production of biodiesel from oils with high acid value (AV) under ultrasonic (US) irradiation and magnetic stirring (MS). With the catalyst and assisted by US, soybean biodiesel yield reached > 90% in only 20 min (or at 318 K) and 97.9% under the optimal conditions. It was easily magnetically separated for 5 cycles with 94.9% recovery rate and biodiesel yield > 80% with both US and MS. The catalyst transesterified Jatropha oil with biodiesel yields of 94.7%, 93.2% and 83.5% at AV of 1.3, 4.8 and 7.3 (mg KOH/g) with US. High biodiesel yield (90.7%) was still achieved from high AV oil (4.8) at low US energy density (0.1 W/mL) and MS. The catalyst combined with US and MS can find practical application for direct production of biodiesel from oils with high AV, and recovered easily for recycles.
The results are published in fuel:
F Zhang, Zhen Fang*, YT Wang, Biodiesel Production Directly from Oils with High Acid Value by Magnetic Na2SiO3@Fe3O4/C Catalyst and Ultrasound, Fuel, 150, 370-377 (2015).

Na2SiO3@Fe3O4/磁性催化剂的制备及其用于超声波直接从高酸值油脂生产生物柴油

由于石化资源有限并且燃烧后二氧化碳浓度急剧升高,所以开发利用可再生的生物质燃料具有重要的价值和意义。生物柴油是一种清洁、可再生、碳中性并可替代石化柴油的液体燃料。利用均相催化剂(如:甲醇钠、氢氧化钾或氢氧化钠)通过酯交换反应制备生物柴油是最常用的方法,但是由于此类催化剂会溶解到甲醇和甘油中使得其难以循环再利用。所以研究人员一直努力寻找合适的非均相固体催化剂,例如碳载K2CO3、CaO、Sr/MgO、 MnO和TiO取代均相液体催化剂。但是碱性非均相固体催化剂由于皂化反应,不适宜用高酸值油(如废弃煎炸油、动物油脂和小桐子油)制备生物柴油。同时,与超声波辐射相比,在机械搅拌方式下,需要更长时间(如3 h)的酯交换反应制备生物柴油。
中国科学院西双版纳热带植物园生物能源组博士生张帆在方真研究员的指导下,成功合成了磁性非均相固体催化剂(Na2SiO3@Fe3O4/C),并利用该固体催化剂在超声波和机械搅拌条件下用于高酸值油脂制备生物柴油。实验结果表明:在20分钟45摄氏度的超声波辅助条件下大豆油得率高于90%(最优条件下可以达到97.9%),在机械搅拌和超声波辐射协同作用时,该催化剂循环五次后生物柴油得率仍然高于80%且催化剂回收率为94.9%。利用该催化剂催化转化不同酸值(1.3、4.8 和 7.3 mg KOH/g)小桐子油,其生物柴油得率分别为94.7%、93.2% 和 83.5%,并且在较低的超声波能量密度下(0.1 W/mL),高酸值小桐子油(4.8 mg KOH/g)的生物柴油得率仍然可以达到90.7%。结合机械搅拌和超声波辅助条件,Na2SiO3@Fe3O4/C可以实现高酸值原料油直接转化制备生物柴油。相关研究成果发表在国际著名能源期刊Fuel上:
F Zhang, Zhen Fang*, YT Wang, Biodiesel Production Directly from Oils with High Acid Value by Magnetic Na2SiO3@Fe3O4/C Catalyst and Ultrasound, Fuel, 150, 370-377 (2015).

Graphical abstract - fan-zf

图为可磁性分离的催化剂Na2SiO3@Fe3O4/C用于小桐子生物柴油制备

Prof. Zhen Fang is listed in “2014 Most Cited Chinese Researchers” in energy

21 2 月, 2015

Recently, Elsevier-Scopus listed Prof. Zhen Fang in “2014 Most Cited Chinese Researchers” in energy.
方真研究员进入“2014年中国高被引学者”能源领域榜单(Elsevier-Scopus).
Dr. Zhen Fang, a researcher in bioenergy, returned to China in 2007 from McGill, Canada formed biomass group in CAS as leader and professor. He is specializing in thermal/biochemical conversion of biomass, nanocatalyst synthesis and its applications, pretreatment of biomass for biorefineries. He obtained his PhDs from China Agricultural University (Biological & Agricultural Engineering, Beijing) and McGill University (Materials Engineering, Montreal).
He is the inventor of “fast hydrolysis” process, Editor-in-Chief, Springer Book Series – Biofuels and Biorefineries; Editor-in-Chief, Journal of Technology Innovations in Renewable Energy; Associate Editor, Biotechnology for Biofuels (IF 6.2, Highest IF in Biofuels); and Editorial Advisory Board Member of Biofpr (Biofuels, Bioproducts and Biorefining, IF 4.3) as well as Energy, Sustainability and Society (a Springer open Journal).
He has 174 scientific papers, reports, books and patents, including 86 papers (31 as first author, 55 as corresponding author) published in top journals (most of them in Q1)  in the areas of energy & fuel, and chemical engineering (Scopus paper: 87; cites: >2000; H index: 23- Scopus Author ID: 7402681505; He wrote 3 books (2 in English), 10 book chapters, 29 papers in refereed conference proceedings and 7 reports, edited 10 English books in renowned international publishers (e.g., Springer), gave 32 keynote & invited lectures and 27 oral presentations & posters, and filed 27 Chinese, 3 US and 3 international PCT invention patents (17 Chinese and 1 US patents were authorized).

Recent selected english books:

  1. 1. Zhen Fang, R. L. Smith, Jr., X. Qi (Editors), Hydrogen Production from Renewable Resources, Springer Book Series – Biofuels and Biorefineries, 13 chapters, Contract-signed, Expected published in 2015.
  2. 2. Zhen Fang, R. L. Smith, Jr., X. Qi (Editors), Production of Biofuels and Chemicals with Microwave, Springer Book Series – Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, ISBN 978-94-017-9611-8, hardcover, 300 pages, 2014.
  3. 3. Zhen Fang, R. L. Smith, Jr., X. Qi (Editors), Production of Biofuels and Chemicals with Ultrasound, Springer Book Series – Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, ISBN 978-94-017-9623-1, hardcover, 415 pages, 2014.
  4. 4. Zhen Fang, C. Xu (Editors), Near-critical and Supercritical Water and Their Applications for Biorefineries, Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, ISBN 978-94-017-8922-6, hardcover, 520 pages, 2014.
  5. 5. Zhen Fang, R. L. Smith, Jr., X. Qi (Editors), Production of Biofuels and Chemicals with Ionic Liquids, Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, ISBN 978-94-007-7710-1, hardcover, 353 pages, 2013. (Highly downloaded: 6,313 chapter downloads for Jan-May 2014).
  6. 6. Zhen Fang (Editor), Liquid, Gaseous and Solid Biofuels – Conversion Techniques, InTech – Open Access, ISBN 978-953-51-1050-7, hardcover, 541 pages, 2013. (31293 chapter downloads for March 2013-June 2014).
  7. 7. Zhen Fang (Editor), Biofuels – Economy, Environment and Sustainability, InTech – Open Access, ISBN 978-953-51-0950-1, hardcover, 386 pages, 2013. (24127 chapter downloads for Jan 2013-June 2014).
  8. 8. Zhen Fang (Editor), Pretreatment Techniques for Biofuels and Biorefineries, Springer-Verlag, Berlin Heidelberg,  ISBN 978-3-642-32734-6, hardcover, 476 pages, 2013. (Among the top 25% most downloaded eBooks in 2013).
  9. 9. Zhen Fang (Editor), Biodiesel – Feedstocks, Production and Applications, InTech – Open Access, ISBN 978-953-51-0910-5, hardcover, 487 pages, 2013. (35026 chapter downloads for Dec 2012-June 2014).
  10. 10. J. M. Marchetti, Zhen Fang (Editors), Biodiesel: Blends, Properties and Applications (Hardback). New York: Nova Science Publishers, Inc., ISBN 13: 9781613246603 ISBN 10: 1613246609, 379 pages, Sep. 2011.
  11. 11. Zhen Fang (Author), Rapid Production of Micro- and Nano-particles Using Supercritical Water, Springer-Verlag, Berlin Heidelberg, ISBN: 978-3-642-12986-5, hardcover, 120 pages, 2010.
  12. 12. Zhen Fang (Author), Complete Dissolution and Oxidation of Organic Wastes in Water, VDM Verlag Dr. Müller, Saarbrücken, Germany, ISBN: 9783639144246, paperback, 192 pages, April 2009.

Congratulations to Miss Chin for the succesful defence her dissertation

8 2 月, 2015

Miss Siew-Xian CHIN, a visitng PhD student from National University of Malaysia, supervised by Assoc. Prof. Dr Chin-Hua CHIA and Prof. Zhen FANG has succesfully passed her defence of dissertation on 27th Jan 2015.

She has successfully defended her thesis entitled “Acid Hydrolysis of Pretreated Oil Palm Empty Fruit Bunch Fibre to Produce Fine Chemicals” while the committee suggested that National University of Malaysia to award her a doctorate degree in Materials Science, according to relevant authorities and subjected to regulations.

During her PhD studies, she underwent 6 months (2013-2014) of training and carried out her research project as a visiting doctoral student in our biomass lab. She managed to complete four research papers and one proceeding in international journals and presented her research findings at international conferences.

Once again, Congratulations to Miss Chin.

DSC00465

生物能源研究组2014年毕业生顺利通过答辩

25 5 月, 2014

5月23日,由云南大学、昆明理工大学和中国科学院昆明植物研究所专家组成的答辩委员会听取了由生物能源研究组2014年博士毕业生蒋丽群的论文报告和答辩。经答辩委员会讨论和无记名投票表决,一致同意蒋丽群同学通过学位论文答辩,建议按有关规定授予理学博士学位。在此毕业之际,向蒋丽群同学表示祝贺。

蒋毕业

Doctoral student of biomass group passed her defense of degree dissertation in 2014

In May 23rd, five experts from Yunnan University, Kunming University of Science and Technology, and Kunming Institute of Botany, CAS (Chinese Academy of Sciences) heard the report and defense of Liqun Jiang, a doctoral student of biomass group that was expected to be graduated in 2014. After discussion and secret ballot, five dissertation committee members all agreed the thesis and defense of Liqun Jiang, and suggested the academic degree evaluation committee of Xishuangbanna Tropical Botanical Garden, CAS award to Jiang the doctorate in science, according to relevant regulations. Congratulation to Jiang!