Archive for the ‘未分类’ Category

水热制氢:Red mud supported Ni-Cu bimetallic material for hydrothermal production of hydrogen from biomass

星期一, 1 4 月, 2024

Red mud supported Ni-Cu bimetallic material for hydrothermal production of hydrogen from biomass

Recently, master student Mr. Gong-xun Xu supervised by Prof. Zhen Fang, collaborated with Dr. S Nanda (Dalhousie University), Profs. AK Dalai (University of Saskatchewan) and Prof. JA Kozinski (Lakehead University published a research article in Industrial Crops & Products about Red mud supported Ni-Cu bimetallic material for hydrothermal production of hydrogen from biomass.

Exploring efficient and reliable catalysts to achieve gasification of biomass waste is a promising research endeavour. In this study solid waste red mud (RM, an inexpensive and efficient support) loaded Ni-Cu metals (Ni-Cu/RM) was used to catalyze hydrothermal gasification of cotton stalk at 340-400 ℃ and 16-30 MPa. In the presence of Ni-Cu/RM catalyst, 21.88 mmol/g H2 yield with 79.89% carbon balance was achieved, increased by 22.8 times under the optimized conditions (380 ℃ for 5 min) based on orthogonal experiments. Under the optimal conditions, H2 yield with neat Ni and Ni/RM loaded on RM is 0.96 and 12.94 mmol/g, respectively due to the specific surface area soaring by 72.0 times from 0.7 to 50.5 m2/g. With Ni-Cu/RM bimetallic catalyst, H2 yield jumped from 3.41 to 21.88 mmol/g, 6.7 times higher than that neat Ni, or reached 84% with Ni-Cu/Al2O3 if Al2O3 was as support. It is further found that Cu promoted the dispersion of Ni on red mud with surface area rising from 50.47 to 73.42 m2/g together with forming Ni-Cu alloy (alkalinity of Ni-Cu/RM rose to 285.65 from 172.21 μmol/g for Ni/RM) enhanced H2 generation. When temperature grew from 340 ℃ (subcritical) to 400 ℃ (supercritical region), H2 yield improved by 3 times from 9.21 to 28.50 mmol/g. Red mud is an ideal candidate for replacing the commercial support Al2O3.

Results were published in Industrial Crops and Products:

GX Xu, S Nanda , JJ Guo, YQ Song, JA Kozinski, AK Dalai, Zhen Fang*, Red Mud Supported Ni-Cu Bimetallic Material for Hydrothermal Production of Hydrogen from Biomass, Industrial Crops and Products (IF 6.4), 212 (2024), 118370. https://doi.org/10.1016/j.indcrop.2024.118370.

Red mud supported Ni-Cu bimetallic material for hydrothermal production of hydrogen from biomass赤泥负载Ni-Cu双金属材料用于生物质水热制氢


赤泥负载Ni-Cu双金属材料用于生物质水热制氢

最近,硕士徐功迅在方真教授的指导下,与加拿大Dalhousie大学助理教授S Nanda博士、Saskatchewan大学 AK Dalai院士和加拿大Lakehead 大学工学院院长JA Kozinski院士在在国际学术期刊Industrial Crops and Products (Q1, IF = 5.9) 发表了一篇题为“赤泥负载Ni-Cu双金属材料用于生物质水热制氢”的研究性论文。

探索高效可靠的催化剂来实现生物质废弃物的气化是一项有前途的研究工作。该研究以负载Ni-Cu金属(Ni-Cu/RM)的固体废赤泥(RM)为载体,在340 ~ 400 ℃、16 ~ 30 MPa条件下催化棉秆水热气化。在Ni-Cu/RM催化剂作用下,优化条件下(380℃、5 min)的H2产率提高22.8倍,达到21.88 mmol/g,碳平衡79.89%。在最优条件下,纯Ni和Ni/RM负载在RM上的H2产率分别为0.96和12.94 mmol/g,比表面积从0.7提高到50.5 m2/g,提高了72.0倍。采用Ni-Cu/RM双金属催化剂时,H2产率从3.41提高到21.88 mmol/g,是纯Ni催化剂的6.7倍;在以Al2O3为载体时,H2产率达到84%。Cu促进了Ni在赤泥上的分散,表面积从50.47增加到73.42 m2/g,并形成了Ni-Cu合金(Ni/RM的Ni-Cu/RM的碱度从172.21提高到285.65μmol/g),促进了H2的生成。当温度从340℃(亚临界)升高到400℃(超临界)时,H2产率从9.21提高到28.50mmol/g,提高了3倍。赤泥是替代Al2O3的理想载体。

 

结果发表在Industrial Crops and Products:

GX Xu, S Nanda , JJ Guo, YQ Song, JA Kozinski, AK Dalai, Zhen Fang*, Red Mud Supported Ni-Cu Bimetallic Material for Hydrothermal Production of Hydrogen from Biomass, Industrial Crops and Products (IF 6.4), 212 (2024), 118370. https://doi.org/10.1016/j.indcrop.2024.118370.

炭催化热解Realizing the Co-valorization of Waste Cooking Oil into High-quality Biofuel and Carbon Nanotube Precursor via Catalytic Pyrolysis Process

星期一, 18 3 月, 2024

Realizing the Co-valorization of Waste Cooking Oil into High-quality Biofuel and Carbon Nanotube Precursor via Catalytic Pyrolysis Process

Recently, Master student Mr. Guo-qiang Zhu supervised by Associate Prof. Lu-jiang Xu published a research article in Chemical Engineering Journal about realizing the co-valorization of waste cooking oil into high-quality biofuel and carbon nanotube precursor via catalytic pyrolysis process.

Valorizing renewable precursors into high-quality biofuel and functional carbon nanomaterials can considerably improve the economic viability. Here, we propose a process for integrated production of high-quality biofuel and carbon nanotubes from waste cooking oil via catalytic pyrolysis coupling with CVD technology. The natural biochar catalyst demonstrates excellent deoxygenation performance and good stability in catalytic pyrolysis process. The AAEMs content in biochar catalysts from various sources has a strong correlation with the selectivity of esters and hydrocarbons in bio-oil. The biofuel obtained under optimal conditions exhibited potential as a precursor for jet fuel. The combined CVD process successfully convert pyrolysis gas into multi-wall carbon nanotubes with yield of 2.13%. The technical-economic analysis demonstrated the feasibility of the integrated production process, projecting profitability and substantial total profit over a ten-year period. Overall, this study improves the economic viability of the waste cooking oil pyrolysis process and can support its wider commercial application.

Related results were published in Chemical Engineering Journal:

GQ Zhu, MX Zhu, EZ Wang, CX Gong, YR Wang, WJ Guo, GL Xie, W Chen, C He, LJ Xu*, H Li, Y Zhang, Zhen Fang, Natural Biochar Catalyst: Realizing the Co-Valorization of Waste Cooking Oil into High-Quality Biofuel and Carbon Nanotube Precursor via Catalytic Pyrolysis Process, Chemical Engineering Journal (IF 16.7), 486 (2024), 150195. https://doi.org/10.1016/j.cej.2024.150195.

Co-valorization of waste cooking oil into high-quality biofuel and carbon nanotube precursor via catalytic pyrolysis process催化热解工艺实现餐厨废油共价制备优质生物燃料和碳纳米管前驱体


催化热解工艺实现废食用油转化为优质生物燃料和碳纳米管前驱体

最近,硕士生祝国强在徐禄江副教授的指导下,在国际学术期刊Chemical Engineering Journal (Q1, IF=15.1) 发表了一篇关于原生生物炭热解催化废弃油脂联产高品质液体燃料和碳纳米管前驱体的研究性论文。

以废弃油脂为原料联产高品质液体燃料和功能性碳纳米材料可显著提高经济可行性。因此,本文提出了一种利用秸秆基生物炭催化热解耦合气相沉积技术联产生产高质量生物燃料和碳纳米管工艺。原生生物炭在催化热解过程中表现出优异的脱氧性能和良好的稳定性。不同来源的生物炭催化剂中碱金属含量与热解油中酯类和烃类的选择性呈一阶线性相关。在最佳条件下获得的生物燃料表现出作为航空燃料前体的潜力。气相沉积技术成功实现将热解气转化为多壁碳纳米管,收率为2.13%。技术经济评价证明了联产的可行性,并预测了10年期间的盈利能力。本研究提高了废弃油脂热解工艺的经济可行性,为其更广泛的商业应用提供了参考。

结果发表在Chemical Engineering Journal:

GQ Zhu, MX Zhu, EZ Wang, CX Gong, YR Wang, WJ Guo, GL Xie, W Chen, C He, LJ Xu*, H Li, Y Zhang, Zhen Fang, Natural Biochar Catalyst: Realizing the Co-Valorization of Waste Cooking Oil into High-Quality Biofuel and Carbon Nanotube Precursor via Catalytic Pyrolysis Process, Chemical Engineering Journal (IF 16.7), 486 (2024), 150195. https://doi.org/10.1016/j.cej.2024.150195.

热解合成芳香腈Valorization of Waste PET: Understanding the Role of Active Ammonia in Facilitating PET Depolymerization and Aromatic Nitrile Formation

星期五, 15 3 月, 2024

Valorization of Waste PET: Understanding the Role of Active Ammonia in Facilitating PET Depolymerization and Aromatic Nitrile Formation

Recently, Mr Geliang Xie supervised by assoc. Prof. Lujiang Xu published a research article in Journal of Cleaner Production about preparation of aromatic nitrile by pyrolysis of polyester plastic PET under active ammonia atmosphere.

Realizing the recovery and valorization of waste polyethylene terephthalate (PET) plastics into value-added products have gained significant importance. This study successfully synthesized aromatic nitriles, specifically terephthalonitrile (TPN), from waste polyethylene terephthalate (PET) plastic through in situ catalytic pyrolysis with urea and γ-Al2O3 catalyst. Based on distributed activation energy model, positive interaction between waste PET and urea is responsible for improved thermal decomposition kinetics. The dosage of urea and pyrolysis temperature significantly influenced TPN production. TPN yield reached 32.5% with selectivity of 85% at 550°C and equivalent urea dosage. Density functional theory calculations validated the role of active ammonia in reducing energy barriers and thus facilitating PET depolymerization. The study highlights the feasibility of recycling waste PET into valuable aromatic nitriles through in situ catalytic pyrolysis with urea and enhances the understanding of the pyrolysis process.

Publication:

GL Xie, GQ Zhu, YF Kang, MX Zhu, QQ Lu, C He, LJ Xu*, Zhen Fang, Valorization of Waste PET: Understanding the Role of Active Ammonia in Facilitating PET Depolymerization and Aromatic Nitrile Formation. Journal of Cleaner Production (IF 11.1), 434 (2024), 140204. https://doi.org/10.1016/j.jclepro.2023.140204.

With urea as the ammonia source and γ-Al2O3 as the catalyst, terephthalonitrile (TPA) can be synthesized by catalytic co-pyrolysis of PET. Co-pyrolysis reduces the activation energy by 50%. The yield and selectivity of TPN under optimal conditions were 32.53% and 85%, respectively.Density functional theory (DFT) calculations revealed the possible mechanism of PET formation of TPN in the presence of urea and γ-Al2O3.

以尿素为氨源,PET在γ-Al2O3催化剂下进行催化共热解可以合成对苯二甲腈(TPA)。共热解可使活化能降低50%,最佳条件下TPN的收率和选择性分别为32.53%和85%。密度泛函理论(DFT)计算揭示了在尿素和γ-Al2O3存在下PET形成TPN的可能机理。


 

硕士生谢葛亮在徐禄江副教授指导下,在国际学术期刊Journal of Cleaner Production上发表研究性论文:

PET的增值:了解活性氨在促进PET解聚和芳腈生成中的作用

最近,硕士生谢葛亮在徐禄江副教授指导下,在国际学术期刊Journal of Cleaner Production (Q1; Impact factor: 11.1)上发表了一篇关于活性氨氛围下热解聚酯塑料PET制备芳香腈的研究性论文。

实现废旧聚对苯二甲酸乙二醇酯(PET)塑料的回收和增值为增值产品具有重要意义。以聚对苯二甲酸乙二醇酯(PET)废塑料为原料,在尿素和γ-Al2O3催化剂的催化下原位热解合成了芳香族腈,特别是对苯二甲酸乙二醇酯(PET)。基于分布活化能模型,废pet与尿素的正相互作用是改善热分解动力学的原因。尿素用量和热解温度对TPN产量有显著影响。在550℃、同等尿素用量条件下,TPN收率为32.5%,选择性为85%。密度泛函理论计算验证了活性氨在降低能垒从而促进PET解聚中的作用。该研究突出了利用尿素原位催化热解将废PET回收为有价芳香烃的可行性,并加深了对热解过程的认识。

详情可见:

GL Xie, GQ Zhu, YF Kang, MX Zhu, QQ Lu, C He, LJ Xu*, Zhen Fang, Valorization of Waste PET: Understanding the Role of Active Ammonia in Facilitating PET Depolymerization and Aromatic Nitrile Formation. Journal of Cleaner Production (IF 11.1), 434 (2024), 140204. https://doi.org/10.1016/j.jclepro.2023.140204.

固定化脂肪酶:Covalent immobilization of lipase on magnetic biochar for one-pot production of biodiesel from high acid value oil

星期四, 29 2 月, 2024

Covalent immobilization of lipase on magnetic biochar for one-pot production of biodiesel from high acid value oil

Recently, PhD student Miss Jing-jing Guo supervised by Prof. Zhen Fang published a research article in Bioresource Technology about preparing immobilized lipase for biodiesel production from high acid value oil.

Magnetic biochar was synthesized via chelation of Fe3+ with carboxymethyl cellulose and pyrolysis for covalently immobilizing Eversa® Transform lipase. The magnetic biochar had 75.8 mg/g lipase loading that was 54.1% higher than that without magnetism. The immobilized lipase achieved at 91.3 mg/g lipase loading with 19.2 U/mg lipase activity after optimized. It showed good thermal and acid stability with 82.5% and 98.2% relative activity at 45 °C and pH 4, respectively. Its relative activity was 90.8% after stored for 30 d at 4 °C. After magnetically separated for 10 cycles, it still kept 70.1% activity due to the strong covalent bonding. The lipase further catalyzed one-pot esterification and transesterification of high acid value oil (38 mg KOH/g) with 95.7% biodiesel yield and cycled for 10 times at 85.7% yield. Kinetic study gave the activation energy of 28.7 kJ/mol. The covalently immobilized lipase could find practical applications.

Related results were accepted in Bioresource Technology:

JJ Guo, YT Wang, Zhen Fang* (Supervisor). Covalent immobilization of lipase on magnetic biochar for one-pot production of biodiesel from high acid value oil. Bioresource Technology, 394, 130237 (2024).  https://doi.org/10.1016/j.biortech.2023.130237.

The immobilized lipase catalyzed high acid value oil for biodiesel production with 95.7% yield and recycled for 10 times at 85.7% yield. (固定化脂肪酶催化高酸值油制备生物柴油的产率为95.7%。酶回收10次,产率仍可达到85.7%。)

磁性生物炭共价固定化脂肪酶一步法从高酸值油中制备生物柴油

最近,博士生郭静静在方真教授的指导下,在国际学术期刊Bioresource Technology (Q1,IF 11.4)发表一篇关于使用共价固定化脂肪酶从高酸值油中制备生物柴油的研究性论文。

通过Fe3+与羧甲基纤维素螯合热解制备了磁性生物炭,用于脂肪酶Eversa® Transform的共价固定化。磁性生物炭的酶载量为75.8 mg/g,比非磁性生物炭提高了54.1%。经优化后,固定化脂肪酶的酶载量为91.3 mg/g,酶活为19.2 U/mg。在45 °C和pH 4条件下,固定化酶的相对活性分别为82.5%和98.2%,表现出良好的热稳定性和耐酸性。在4 °C贮藏30天后,该酶的相对活性为90.8%。通过磁分离使用10次后,由于强的共价键,该酶仍保留了70.1%的相对活性。固定化脂肪酶催化高酸值油制备生物柴油的产率为95.7%,该酶回收10次,生物柴油产率仍可达到85.7%。动力学研究表明该反应的活化能为28.7 kJ/mol。该共价固定化脂肪酶具有实际应用价值。

JJ Guo, YT Wang, Zhen Fang* (Supervisor). Covalent immobilization of lipase on magnetic biochar for one-pot production of biodiesel from high acid value oil. Bioresource Technology, 394, 130237 (2024).  https://doi.org/10.1016/j.biortech.2023.130237.

腾冲科学家论坛Lectures in Tengchong No.1 Middle School

星期六, 30 12 月, 2023

Lectures in Tengchong No.1 Middle School

On December 3, 2023, one of the activities of “Tengchong Scientists Forum series – Academician Science Popularization into Campus Activity” was held at Tengchong No.1 Middle School. The theme of the activity is “Love Science and Advocate Science”, which stimulates the interest of young people in exploring science through forms such as science popularization lectures, science experiment shows, and science popularization book exhibitions.

On the day of the event, Prof. Keqin Zhang (Academician of CAS), Dr. Zhaoyun Zhu (Academician of CAE), Prof. Caucher Birkar from Tsinghua University (2018 Winner of the Fields Medal), and Prof. Zhen Fang (Fellow of the Canadian Academy of Engineering), gave lectures in their respective fields. Prof. Zhen Fang gave a talk on “Biorefining agricultural and forestry biomass as fuel and high value-added products”. The 14th batch of Yunnan Province Science Popularization Base awarding ceremony was held on-site; The scientific experiment exhibition – Fun Science Gallium – was welcomed by teachers and students on site.

Prof. Caucher Birkar and Prof. Zhen Fang

Prof. Caucher Birkar and Prof. Zhen Fang


方老师参加“腾冲科学家论坛系列活动之一——院士科普进校园活动”

12月3日,2023腾冲科学家论坛系列活动之一——院士科普进校园活动在腾冲一中举行。活动以“热爱科学 崇尚科学”为主题,通过科普讲座、科学实验秀、科普图书展等形式,激发青少年探索科学的兴趣。

活动当天,中国科学院院士张克勤、中国工程院院士朱兆云、清华大学丘成桐数学科学中心教授考切尔•比尔卡尔(2018年菲尔兹奖获得者-数学诺奖)、加拿大工程院院士方真(南京农业大学教授)结合各自领域展开科普。现场举行了第十四批云南省科普基地授牌仪式;科学实验展演——趣味科学“镓”受到现场师生欢迎。

中国科学院院士张克勤以《真菌与线虫的战争》为题,从作物的杀手——根结线虫、线虫的天敌——捕食线虫真菌、真菌如何设置陷阱等六个方面,通俗易懂地讲解了真菌与线虫之间的战争。中国工程院院士朱兆云以《话说中药》为题,从历史上的中药、现代中药和云南中药三个部分,展示了中药作为中国科学文化的瑰宝所具有的无限魅力,详细介绍云南白药传承创新发展的历程。伊朗裔英籍数学家考切尔•比尔卡尔以《From Science to Happiness》为题,阐释了如何从科学中获得幸福,如何在解决问题、发现奥秘中收获喜悦,如何正确认识教育在科学研究发现中的重要作用。加拿大工程院院士方真以《生物精炼农林生物质为燃料和高附加值产物》为题,介绍了生物质资源、生物炼制、生物质的几种水解方式,分享如何通过化学、生物的方法将糖转化为高附加产物以及合成生物柴油,展现生物技术在实现经济可持续发展和环保方面的积极作用。

省科技厅党组书记、厅长王学勤表示,院士科普进校园活动搭建了院士专家与青年学生的交流平台,不仅是教育“双减”中做好科学教育加法的具体举措,更是践行习近平总书记关于科技创新和科学普及“一体两翼”理论,促进两翼齐飞的重要载体。以此次活动为契机,希望同学们心怀科学梦想、树立创新志向,爱科学、懂科学、学科学,传承科学家精神。

  昆明日报全媒体记者:张怡

责编:莫开井