Archive for 6 月, 2024

院士年会Prof. FANG attended 2024 CAE Annual Conference & Induction Ceremony of New Fellows

星期一, 17 6 月, 2024

Prof. FANG attended 2024 CAE Annual Conference & Induction Ceremony of New Fellows

From May 26 to June 5, 2024,  Prof. Zhen FANG visited Canada and USA, attended 2024 CAE (Canadian Academy of Engineering: https://www.cae-acg.ca/) Annual Conference & Induction Ceremony in London (May 27-29), visited  McGill (https://www.mcgill.ca/) in Montreal (May 30-June 1) and New York University (NYU, https://www.nyu.edu/) (June 2-4).

The program included several panel presentations and discussions on important issues:

  • AI/ML: The Disruptive Force Reshaping Engineering Disciplines
  • Quantum Computing: Unleashing New Potentials and Challenges in Engineering
  • From Lab to Market: Translating Cleantech Innovations into Practical Applications
  • The next-generation batteries for EVs
  • Infrastructure: energy and carbon emissions reduction
  • Roadmap for Resilient Building
  • The changing nature of severe summer storms and impact on engineering design

Prof. Donna Strickland, the Nobel Laureate (2018, Physics) delivering a keynote lecture in the morning of May 28 (2018年物理诺奖得主唐娜·斯特里克兰院士主题报告

Prof. Fang in the morning of May 28(方老师出席5月28日的大会)

Profs. Donna Strickland and Fang in the morning of May 28 (大会休息期间,唐娜·斯特里克兰院士和方老师合影)


方老师出席加拿大工程院年会暨新院士入职典礼

2024年5月26日至6月5日,方老师访问加拿大和美国,出席2024 CAE(加拿大工程院:https://www.cae-acg.ca/)年度会议暨新院士入职典礼(伦敦,5月27-29日),随后访问麦吉尔大学(https://www.mcgill.ca/)(蒙特利尔,5月30日至6月1日)和纽约大学(https://www.nyu.edu/)(6月2-4日)。

 

大会包括几个关于重要问题的报告和小组讨论:

  • AI/ML:颠覆性力量重塑工程学科
  • 量子计算:释放工程中的新潜力和挑战
  • 从实验室到市场:将清洁技术创新转化为实践应用
  • 电动汽车的下一代电池
  • 基础设施:减少能源和碳排放
  • 弹性建筑路线图
  • 严重夏季风暴的性质变化及其对工程设计的影响

McGill sci road to the top of Royal Mount (通往皇家山顶的麦吉尔科学之路)

Prof. Fang visited Prof. CJ Li’s Lab at McGill in Montreal (麦基尔大学CJ Li院士实验室)

Prof. Fang visited NYU (纽约大学一角)

Prof. Fang in the library at NYU(纽大图书馆)

生物柴油脂肪酶Biodiesel production via simultaneous esterification and transesterification of Periplaneta americana oil with liquid lipase Eversa® transform 2.0

星期日, 16 6 月, 2024

生物柴油脂肪酶Biodiesel production via simultaneous esterification and transesterification of Periplaneta americana oil with liquid lipase Eversa® transform 2.0

Recently, PhD student Miss Jing-jing Guo supervised by Prof. Zhen Fang published a research article in Renewable Energy about biodiesel production from high acid value oil with liquid lipase.

Undeveloped Periplaneta americana oil (acid value 38.32 mg KOH/g) was directly used for one-step production of biodiesel with lipase without acid-pretreatment step for the commercial alkaline process. Biodiesel was produced via simultaneous esterification and transesterification of Periplaneta americana oil in the presence of lipase Eversa® Transform 2.0 (ET2) (12 US$/kg) in solvent-free system. The maximum biodiesel yield of 98.63% was obtained under the optimized conditions of 32 °C, 8.5 wt.% lipase dosage, 8 h, 6.5/1 methanol/oil molar ratio, and 4 wt.% water. Lipase ET2 was recycled 6 times at > 89.52 % biodiesel yield. Biodiesel yield of 93.94 % was further achieved in a 1 L reactor with 15.08 g/kg lipase/biodiesel. Biodiesel cost was estimated as 589.3 US$/ton. Kinetics study gave activation energy of 24.50 kJ/mol with kinetic Michaelis constant of 1.19 mol/L. The physicochemical properties of biodiesel met both Chinese national and US ASTM standards that could be blended with petro-diesel to be applied in both countries. This study suggests that lipase could directly catalyze waste oils for the production of biodiesel at low temperature.

Related results were published in Renewable Energy:

JJ Guo, S Gao, J Yang, H Zhang, YT Wang*, WN Ding*, Zhen Fang*. Biodiesel production via simultaneous esterification and transesterification of Periplaneta americana oil with liquid lipase Eversa® transform 2.0. Renewable Energy (IF 8.7), 229 (2024), 120756. https://doi.org/10.1016/j.renene.2024.120756

Liquid lipase Eversa® Transform 2.0 catalyzed high acid value Periplaneta americana oil for biodiesel production with 98.63% yield and recycled 6 times at > 89.52% biodiesel yield. (液体脂肪酶催化高酸值美洲大蠊油制备生物柴油的产率为98.63%。酶回收6次,生物柴油产率仍可达 > 89.52%)。


液体脂肪酶Eversa® Transform 2.0催化美洲大蠊油同时进行酯化和酯交换反应制备生物柴油

近期,博士生郭静静同学在方真教授的指导下,在国际学术期刊Renewable Energy (Q1,IF 8.7)发表了一篇关于液体脂肪酶催化高酸值油制备生物柴油的研究性论文。

脂肪酶直接催化美洲大蠊油(酸值为38.32 mg KOH/g)一步法制备生物柴油,而无需传统碱工艺的酸催化预处理步骤。在无溶剂体系中,脂肪酶Eversa® Transform 2.0(ET2)(12美元/千克)催化美洲大蠊油同时进行酯化和酯交换反应制备生物柴油。在最优反应条件下(反应温度32 °C、加酶量8.5 wt.%、反应时间8 h、醇/油摩尔比6.5/1、加水量4 wt.%),生物柴油的产率为98.63%。该酶回收6次,生物柴油产率仍高达 > 89.52%。在1 L反应器中,生物柴油产率仍可达93.94%在15.08 g/kg酶/生物柴油条件下。生物柴油成本估算为589.3美元/吨。动力学研究表明该反应的活化能为24.50 kJ/mol,动力学米氏常数为1.19 mol/L。生物柴油的理化指标符合中国和美国ASTM的标准,可与柴油混合并在两国应用。该研究表明脂肪酶可以在低温条件下直接催化废弃油脂制备生物柴油。

结果发表在Renewable Energy:

JJ Guo, S Gao, J Yang, H Zhang, YT Wang*, WN Ding*, Zhen Fang*. Biodiesel production via simultaneous esterification and transesterification of Periplaneta americana oil with liquid lipase Eversa® transform 2.0. Renewable Energy (IF 8.7), 229 (2024), 120756. https://doi.org/10.1016/j.renene.2024.120756

 

冷冻预处理秸秆Thermodynamic modeling of freeze pretreatment in the destruction of rice straw structure combined with alkaline-hydrothermal method for enzymatic hydrolysis

星期日, 16 6 月, 2024

Thermodynamic modeling of freeze pretreatment in the destruction of rice straw structure combined with alkaline-hydrothermal method for enzymatic hydrolysis

Recently, PhD student Miss Qian Dong supervised by Prof. Zhen Fang published a research article in Bioresource Technology about freeze-pretreatment modeling and its combination with alkaline-hydrothermal method to enhance enzymatic hydrolysis of rice straw.

Freeze pretreatment combined with alkaline-hydrothermal method of rice straw for enzymatic hydrolysis was studied. Crystallization stress in the rice stem pores caused by water freezing at -20– -40 °C was modeled to illustrate the destruction mechanism. The stress was calculated as 22.5–38.3 MPa that were higher than the tensile yield stress of untreated stems (3.0 MPa), indicating ice formation damaging pore structure. After freeze at -20 °C, rice straw was further hydrothermally treated at 190 °C with 0.4 M Na2CO3, achieving 72.0 % lignin removal and 97.2 % cellulose recovery. Glucose yield rose to 91.1 % by 4.3 times after 24 h hydrolysis at 10 FPU loading of Cellic®CTec2 cellulase. The specific surface area of rice straw was 2.6 m2/g increased by 1.2 times after freeze. Freeze combined with alkaline-hydrothermal treatment is a green and energy-efficient method for improving enzymatic hydrolysis.

Related results were published in Bioresource Technology:

Q Dong, CX Gong, GL Xie, GQ Zhu, Zhen Fang*. Thermodynamic modeling of freeze pretreatment in the destruction of rice straw structure combined with alkaline-hydrothermal method for enzymatic hydrolysis. Bioresource Technology (IF 11.9), 403 (2024), 130864. https://doi.org/10.1016/j.biortech.2024.130864.

Crystallization stress in the rice stem pores was 33 MPa after freeze 4 times at -20 °C. Rice straw was pretreated by freeze-Na2CO3-hydrothermal treatment with 91.1% glucose yield after 24 h enzymatic hydrolysis. (在-20 °C条件下冷冻4次后,水稻茎秆孔内水产生的结晶应力为33 MPa。采用冷冻辅助Na2CO3水热预处理稻秆,酶解24 h后葡萄糖产率为91.1%。)

 

冷冻预处理热力学建模及其结合碱性水热法破坏稻秆结构用于酶解

近期,博士生董倩同学在方真教授的指导下,在国际学术期刊Bioresource Technology (Q1,IF 11.4)发表一篇关于冷冻预处理热力学建模及其结合碱性水热法处理水稻秸秆用于酶解的研究性论文。

采用冷冻联合碱水热预处理水稻秸秆。通过建立水稻茎秆中水冻结(-20– – 40 °C)引起的结晶应力模型来阐明冷冻预处理的破坏机制。冷冻产生的结晶应力为22.5–38.3 MPa,高于未处理茎秆的拉伸屈服应力(3.0 MPa),表明冷冻预处理破坏了水稻茎秆的孔隙结构。水稻秸秆在-20 °C冷冻后进行碱水热处理(190 °C, 0.4 M Na2CO3),木质素去除率为72.0%,纤维素回收率为97.2%。在10 FPU Cellic®CTec2纤维素酶负载下水解24 h后,葡萄糖的产率提高了4.3倍,达到91.1%。冷冻预处理后,水稻秸秆比表面积为2.6 m2/g,提高了1.2倍。冷冻联合碱性水热处理是一种绿色节能的改善酶解的方法。

结果发表在Bioresource Technology:

Q Dong, CX Gong, GL Xie, GQ Zhu, Zhen Fang*. Thermodynamic modeling of freeze pretreatment in the destruction of rice straw structure combined with alkaline-hydrothermal method for enzymatic hydrolysis. Bioresource Technology (IF 11.9), 403 (2024), 130864. https://doi.org/10.1016/j.biortech.2024.130864.