生物柴油氢气联产A green process for biodiesel and hydrogen coproduction from waste oils with a magnetic metal-organic framework derived material
星期二, 13 6 月, 2023A green process for biodiesel and hydrogen coproduction from waste oils with a magnetic metal-organic framework derived material
Recently, Dr. Wen-jie Cong (female) supervised by Prof. Zhen Fang published a research article in Biomass & Bioenergy about biodiesel and hydrogen coproduction from waste oils with a solid base derived from magnetic metal-organic framework.
Magnetic self-assembly metal-organic frameworks (MOFs) were constructed for the co-production of biodiesel and hydrogen from waste oils. The highly active MOF nanoparticles were synthesized and catalyzed crude glycerol for 126.8% hydrogen yield in subcritical water (350 ℃, 5 min). By coupling alkali with MOF-derived carriers, continuous process of fast production of biodiesel (with microwave heating at 90 ℃ in 15 min, 15:1 methanol/oil molar ratio and 9 wt.% catalyst dosage) and hydrogen (350 ℃, 5 min) were achieved with yield of 95.3% biodiesel from waste oil (AV was 3.95 mg KOH) and 102.6% H2 from crude glycerol by-product, respectively. The nanoparticles were magnetically separated for 5 cycles with 95% biodiesel yield and increased hydrogen yield by 50% after deactivated. Characterization techniques showed active sites of MOF-derived nanoparticles were well dispersed with surface area increased by 3.9 times for highly efficient production of biodiesel and hydrogen. It revealed that MOF materials can be designed to make active catalysts and carriers for loading catalytic sites for biomass conversions to targeted biofuels.
A self-assembled nano Ni-MOF was synthesized as magnetic carrier and catalyst support for biodiesel and hydrothermal hydrogen production from waste oils. (以自组装纳米Ni-MOF作为磁性载体制备催化剂,以废弃油脂为原料联合生产生物柴油和氢气)
Related results were accepted in Biomass & Bioenergy:
WJ Cong, J Yang, JG Zhang, Zhen Fang*, ZD Miao. A green process for biodiesel and hydrogen coproduction from waste oils with a magnetic metal-organic framework derived material. Biomass & Bioenergy. 175 (2023) 106871. https://doi.org/10.1016/j.biombioe.2023.106871.
磁性金属有机骨架衍生材料用于废油联产生物柴油和氢气的绿色工艺
最近,丛文杰博士(女)在方老师的指导下,在国际学术期刊Biomass & Bioenergy(IF5.77,Q1)发表金属有机框架衍生固体碱联合制备生物柴油和氢气的研究性论文。
本研究通过制备自组装磁性纳米金属有机骨架 (Ni-MOF),构建了以废弃油为原料联合制备生物柴油和氢气的绿色工艺。在亚临界水(350 ℃,5 min)条件下,该高活性Ni-MOF纳米颗粒催化粗甘油水热制氢,氢气产率高达126.8%。以该Ni-MOF为载体制备磁性固体碱,实现高酸值废弃油(酸值3.95 mg KOH)制备生物柴油,产率为95.3%(90 ℃、15 min、甲醇/油摩尔比15:1、催化剂用量为9 wt.%),该磁性固体碱经磁性分离后重复使用5次,生物柴油产率为95%;失活后的磁性固体碱用于水热气化副产物粗甘油制备氢气,产率为102.6%(350 ℃,5 min),氢气产率提高了50%。研究结果表明该Ni-MOF纳米颗粒活性位点分散性好,比表面积增加了3.9倍,可高效联产生物柴油和氢气。该MOF材料可以设计成多功能磁性载体和高性能催化剂,用于负载高活性催化位点实现生物质快速转化为生物燃料。
详情可见:
WJ Cong, J Yang, JG Zhang, Zhen Fang*, ZD Miao. A green process for biodiesel and hydrogen coproduction from waste oils with a magnetic metal-organic framework derived material. Biomass & Bioenergy. 175 (2023) 106871. https://doi.org/10.1016/j.biombioe.2023.106871.