Prof. Fang attended the 17 European Meeting in Supercritical Fluids and gave keynote speech

Prof. Fang attended the 17 European Meeting in Supercritical Fluids and gave keynote speech

On April 8-11, 2019, Prof. Zhen FANG attended the 17th European Meeting in Supercritical Fluids (ESSF2019) and 7th European Meeting on High Pressure Technology in Ciudad Real (Spain)(https://eventos.uclm.es/16387/detail/17-thsubindice-isasf-congress.html). He gave a keynote speech entitled “Hydrothermal Conversion of Renewable Resources and Wastes to Fuels” to introduce properties of hydrothermal water, conversion of biomass, hydrolysis, SCWO, recycling of plastics and particle synthesis. He also chaired a section and helped to evaluate the best posters  as the member of the selection committee for the CFS Jerry King Poster Award.

European Meeting in Supercritical Fluids (ESSF) is a biannual conference, supported by a number of universities and companies all around Europe, with a strong participation and implantation in the scientific community worldwide. The meeting are an exciting and informative with high quality programs including plenary/keynote lectures, invited talks, forums in a variety of topics, oral and poster presentations and many other social programs for over 250 participants from all around the world.

On April 7, before the meeting, Prof. Fang (as associate editor of Journal of Supercritical Fluids) also attended editorial meeting presided over by Prof. Erdogan Kiran, Editor-in Chief to discuss the issues related to the Journal such as virtual special Issues, manuscript processing software and manuscript review.

方老师出席17届欧洲超临界流体会议并发表主旨演讲

201948日至11,方真教授,出席了在西班牙雷阿尔城举行的第17届欧洲超临界流体会议(ESSF2019)和第7届欧洲高压技术会议(https://eventos.uclm.es/16387/detail/17-thsubindice-isasf-congress.html),并做了主旨发言。演讲题目为《水热转化可再生资源和废弃物为燃料》,内容包括:水热性质、生物质转化、水解、超临界水氧化、塑料回收和颗粒合成。此外,他亦担任一个分会的主席,并作为“杰里.金墙报奖”评选委员会成员,协助评审最佳墙报。

欧洲超临界流体会议是一个两年一次的会议,由许多欧洲各地的大学和公司参与和支持,拥有全球超临界流体和高压科技社区强大的参与和植入。日程包括全体会议/主题演讲,邀请讲座,各种主题的论坛,口头和海报。来自世界各地的250多名代表参与了演讲、讨论和许多其他社交活动。

另外,47日,会议开始前,方老师(作为超临界流体杂志副主编)也出席了刊物主编Erdogan Kiran教授主持的编辑委员会会议,讨论了该期刊有关的专题、稿件处理软件、稿件评审等问题。

Complete recovery of cellulose from rice straw pretreated with EG-AlCl3 for enzymatic hydrolysis

Complete recovery of cellulose from rice straw pretreated with EG-AlCl3 for enzymatic hydrolysis

Ethylene glycol (EG) and AlCl3 pretreated rice straw at 150 °C with 0.055 mol/L AlCl3 for 0.5 h, resulting in 100% cellulose recovery with 88% lignin and 90% hemicellulose removal for a remarkable glucose yield of 94% after 24 h enzymatic hydrolysis. (在150 °C和0.055 mol/L AlCl3条件下,水稻秸秆经乙二醇-水预处理0.5 h后,保留100%的纤维素,并去除88%的木质素和90%的半纤维素;10 FPU/g和5%基质浓度条件下,酶水解24 h后,预处理后水稻秸秆的酶解率达到94%。)

Recently, PhD student Mr. Song Tang supervised by Prof. Zhen FANG developed a novel ethylene glycol (EG) and aluminum chloride pretreatment for lignocellulosic biomass. EG-AlCl3 pretreatment had an extremely good selectivity for component fractionation, resulting in 88% delignification and 90% hemicellulose removal, with 100% cellulose recovered or 76% (w/w) cellulose content in solid residue at 150 °C with 0.055 mol/L AlCl3. The pretreated residue (5%, w/v) presented a higher enzymatic hydrolysis rate (glucose yield increased 2 times to 94%) for 24 h at cellulase loading of 10 FPU/g. The hydrolysis behavior was correlated with the composition and structure of substrates characterized by SEM, FT-IR, BET, XRD and TGA. The enzyme adsorption ability of pretreated straw was 12-folds that for the original sample. EG-AlCl3 solution was further cycled for 3 times with 100% cellulose recovery but only 29% lignin removal due to the loss of AlCl3.
The results were published:
S Tang, Q Dong, Zhen Fang*, ZD Miao, Complete Recovery of Cellulose from Rice Straw Pretreated with Ethylene Glycol and Aluminum Chloride for Enzymatic Hydrolysis, Bioresource Technology, 284, 98–104(2019). https://doi.org/10.1016/j.biortech.2019.03.100.
————————————-
乙二醇和氯化铝预处理水稻秸秆完全回收纤维素以用于酶水解

最近,博士生唐松(男)同学在方老师的指导下,开发出一种新型的应用于木质纤维素生物质的乙二醇-氯化铝预处理技术,其对木质纤维素组分分离具有极好的选择性。在150 °C和0.055 mol/L AlCl3条件下,水稻秸秆中纤维素被100%保留,88%的木质素和90%的半纤维素被去除。同时,固体残渣中纤维素含量达到76%,且在10 FPU/g和5%基质浓度条件下,酶水解24 h后,酶解率较原始水稻秸秆提高2倍,达到了94%。通过SEM、FT-IR、BET、XRD和TGA等技术手段表征了水稻秸秆的组成结构和其可酶水解能力的关系。水稻秸秆经预处理后,对纤维素酶的吸附能力提高了11倍。此外,乙二醇-氯化铝溶液用于水稻秸秆循环处理3次,均保持100%纤维素回收率,但由于循环处理期间AlCl3的损失,木质素脱除率降至29%。

结果发表在Bioresource Technology: S Tang, Q Dong, Zhen Fang*, ZD Miao, Complete Recovery of Cellulose from Rice Straw Pretreated with Ethylene Glycol and Aluminum Chloride for Enzymatic Hydrolysis, Bioresource Technology, 284, 98–104 (2019). https://doi.org/10.1016/j.biortech.2019.03.100 (Q1, IF 5.8).

A paper was published in Nature Communications

N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks

Recently, Dr. H Li and Prof. Zhen Fang, collaborated with Profs. M Watanabe & RL Smith Jr (Tohoku University, Japan) and Prof. EJM Hensen (Eindhoven University of Technology, The Netherlands), published a paper in Nature Communications about amination of biomass-derived feedstocks.

Nitrogen-containing compounds, especially primary amines, are vital building blocks in nature and industry. Herein, a protocol is developed that shows in situ formed N-formyl quasi-catalytic species afford highly selective synthesis of formamides or amines with controllable levels from a variety of aldehyde- and ketone-derived platform chemical substrates (that can be easily produced via our patented “fast hydrolysis” process from lignocelluloses and subsequent catalytic conversions) under solvent-free conditions. Up to 99% yields of mono-substituted formamides are obtained in 3 min. The C-N bond formation and N-formyl species are prevalent in the cascade reaction sequence. Kinetic and isotope labeling experiments explicitly demonstrate that the C-N bond is activated for subsequent hydrogenation, in which formic acid acts as acid catalyst, hydrogen donor and as N-formyl species source that stabilize amine intermediates elucidated with density functional theory. The protocol provides access to imides from aldehydes, ketones, carboxylic acids, and mixed-substrates, requires no special catalysts, solvents or techniques and provides new avenues for amination chemistry.

Related results were published:

H Li, HX Guo, YQ Su, Y Hiraga, Zhen Fang*, EJM Hensen, M Watanabe* & RL Smith Jr*, N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks, Nature Communications, 10, Article number: 699 (2019), https://doi.org/10.1038/s41467-019-08577-4.

Behind the paper:

https://chemistrycommunity.nature.com/channels/1465-behind-the-paper/posts/44026-n-formyl-stabilizing-quasi-catalytic-species

———————————–

N-甲酰基稳定准催化物种促进生物质原料快速、选择性地无溶剂氨化生物质原料

最近,李虎博士和方真教授,与日本和荷兰科学家合作(日本东北大学RL Smith Jr教授和荷兰埃因霍温科技大学EJM Hensen教授研究组)合作,在《自然通讯》期刊上发表了一篇有关于氨基化生物质原料的文章。

含氮化合物, 特别是初级胺, 是自然界和工业原料的重要组成部分。本文中,开发了一种方案,其显示原位形成的N-甲酰基,准催化物质在无溶剂条件下从各种醛和酮衍生的平台化学底物(这可以很容易地通过我们的“快速水解”专利技术, 从木质纤维素水解和随后的催化转化获得)提供具有可控水平的甲酰胺或胺的高度选择性合成。该方案在3分钟内可获得高达99%的单取代甲酰胺产率。C-N键形成和N-甲酰基种类普遍产生在级联反应序列中。动力学和同位素标记实验明确证明C-N键被活化用于随后的氢化,其中甲酸充当酸催化剂,氢供体和N-甲酰基物质源稳定胺中间体用密度泛函理论阐明。该方案提供了从醛、酮、羧酸和混合基质获得酰亚胺的途径,不需要特殊的催化剂、溶剂或技术,并为胺化化学提供了新的途径。

研究背景

(1)初步思考

2017年,我们(方真教授、RL Smith Jr教授、李虎博士)提交了中国南京农业大学和日本东北大学之间关于生物质生产高附加化学品的合作计划,李虎博士将在东北大学进行为期两年的博士后研究。在准备该计划时,我们撰写了一份关于生物质的综述(双功能固体催化材料:https://doi.org/10.1016/j.pecs.2016.04.004)并出版了一本关于双功能催化剂的书(双功能催化剂生产生物燃料和化学品,www.springer.com/gp/book/9789811051364)。在这些调查中,我们得出结论,生物质衍生原料的胺化将是一个很好的研究课题,但它需要我们开发高度复杂的催化反应系统,处理氢气或氨,并仔细优化给定原料的反应条件。例如,含有一个以上官能团的生物质衍生平台化学品(例如呋喃醛,如糠醛)的胺化不易用经典或非催化方法合成,因为呋喃环易于打开形成无规氨基物种。因此,需要一种新的方法,最终引导我们发现一些非常重要的化学反应。

(2)出乎意料的结果

我们的研究小组通过在流动条件下快速加热和混合原料来研究生物质的快速水解和材料生产(http://biomass-group.njau.edu.cn/info/1016/1256.htm)。我们想象如果我们能够将原料快速加热到反应条件,那么就有可能提高胺化的选择性。在小规模的微波加热对于原料(糠醛,甲酸铵,甲酰胺,甲酸)的快速加热是有益处的,幸运的是,我们小组有一个微波反应专家,他有一个合适的实验装置来测试这个想法。即使通过快速加热,我们也预估我们必须设计某种新型稳定的双功能催化剂来选择性地胺化糠醛。然而,当进行微波加热实验和分析时,揭示了非常意外的结果。值得注意的是,使用不同比例的甲酸和甲酰胺的快速加热速率的实验给出了选择性的胺化,其可以在没有多相催化剂的情况下在几分钟的反应时间内控制反应!

图1 使用快速加热和甲酰胺与甲酸选择性胺化平台化学品以产生N-甲酰基物质。R1和R2可含有官能团。通过用甲醇处理相应的酰胺获得伯胺、仲胺或叔胺。

这里,甲酸不仅作为H-供体,而且作为产生N-甲酰基物质的酸催化剂,其导致C-N键活化和稳定胺化中间体。

(3)机理

图2(顶部)显示了方案中糠醛的胺化和N-甲酰基稳定催化物质。从原位形成的N-甲酰亚胺或碳酰胺中间体可快速产生可检测量的偕二胺,FDFAM。为了在理论上研究该机制,我们增加了来自你荷兰埃因霍温科技大学的两名合作者,他们进行了DFT计算(图2,底部)。FDFAM中间体是高度稳定的,可以在微波和油浴加热实验中进行证实。

图2 使用甲酰胺(AM)与甲酸(FA)将糠醛(FUR)胺化为1,展示N-甲酰基稳定的准催化物质(顶部)和DFT计算,展示具有较低能量的中间体二胺(FDFAM)的途径(底部)。

(4)广泛的使用范围

该方案广泛适用于生物质衍生的二氧化碳和N-甲酰亚胺的合成,用于由醛,酮,羧酸或它们的混合物生产组合化合物,无聚合物单体或杂环化合物,如反应所示(S1)-(S6)(图3)。

图3 将方案扩展到其他条件,显示使用范围的广泛性(S1-S6)

(5)新途径

该方案适用于流动化学研究,具有扩大规模的巨大潜力。此外,多相催化的使用可能用于增强本研究的各个方面或开发新的方案。

(6)总结

总而言之,无论是在研究方面,还是与才华横溢的国际成员合作,以及与自然的工作人员,编辑和审稿人合作,热情地帮助我们实现化学的潜力,这都是一段美妙的旅程。有关完整评论者的评论和作者回复,请参https://rdcu.be/bma7w 和支持材料。有关详细信息,请参阅我们的论文:

H Li, HX Guo, YQ Su, Y Hiraga, Zhen Fang*, EJM Hensen, M Watanabe* & RL Smith Jr*, N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks, Nature Communications, 10, Article number: 699 (2019), https://doi.org/10.1038/s41467-019-08577-4.

A paper was published in Renewable & Sustainable Energy Reviews

Levoglucosan and Its Hydrolysates via Fast Pyrolysis of Lignocellulose for Microbial Biofuels.

Recently, Dr. LQ Jiang (Guangzhou Institute of Energy Conversion, CAS) and Prof. Zhen Fang, collaborated with Prof.  ZL Zhao (Guangzhou Institute of Energy Conversion), published a review paper in Renewable & Sustainable Energy Reviews about Fast Pyrolysis for Microbial Biofuels. Fast pyrolysis, which is comparable with the enzyme or acid hydrolysis, should be considered for further development for fermentable levoglucosan (LG) production. This manuscript offers a broad review of the current status and future research perspectives of LG and its hydrolysates production from lignocellulosic biomass by fast pyrolysis for fermentation. The utilization, distribution and formation paths of LG from cellulose are presented.In consideration of the complexity of cellulose structure and lignocellulosic components, the influence of the major individual components (cellulose, hemicellulose, lignin and ash) and the structural properties (particle size,degree of polymerization and crystallinity) on the LG formation are reviewed. Aiming to further improve the yield of LG and the fermentability of pyrolysate, a number of pretreatment methods (e.g. hot-water pretreatment,acid pretreatment, acid impregnation) prior to fast pyrolysis, hydrolysis of LG and detoxification before fermentation, and microbial production of valuable products are also discussed in detail. At last, a brief conclusion for the challenge in this topic is provided. The low content of LG and the presentence of inhibitors to biocatalysts in the pyrolysate of lignocelluloses hamper the fermentable utilization of pyrolytic sugars, which need further investigation and improvement to make this process feasible.

Related results were published:

LQ Jiang, Zhen Fang*, ZL Zhao*, AQ Zheng, XB Wang, HB Li, Levoglucosan and Its Hydrolysates via Fast Pyrolysis of Lignocellulose for Microbial Biofuels: A State-of-the-Art Review, Renewable & Sustainable Energy Reviews, 105, 215-229 (2019).

Microbial Biofuels and Chemicals Production via Fast Pyrolysis Routes (

通过快速热解途径生产微生物生物燃料和化学品)

———————————————————————-

快速热解木质纤维素生产左旋葡聚糖及其水解产物

最近,蒋丽群博士(中科院广州能源研究所副研究员)为第一作者,方真教授和Zhao ZL研究员(广州能源研究所)共同通讯作者,在期刊《Renewable & Sustainable Energy Reviews》(IF9.2)上发表了一篇有关于快速热解和发酵生产微生物生物燃料的综述。快速热解,相比较与酶解和酸水解,应考虑热解产物左旋葡聚糖(LG)用于可发酵生产的进一步开发。本论文以广泛的视角对于木质纤维素生物质快速热解,进一步发酵生产左旋葡聚糖及其水解产物的现状和未来研究前景进行了探讨。纤维素的热解产物左旋葡聚糖的应用、分布和形成途径将被说明。考虑到纤维素结构和木质纤维素组分的复杂性,综述了主要组分(纤维素,半纤维素,木质素和灰分)对左旋葡聚糖热解形成的结构性质(粒度,聚合度和结晶度)的影响。为了进一步提高左旋葡聚糖的产量和热解产物的发酵能力,快速热解前会有一些预处理方法(如热水预处理,酸预处理,酸浸渍),左旋葡聚糖水解和发酵前的解毒,以及微生物生产的有价值产品也会详细讨论。最后,提出了关于这个主题挑战的简要结论。左旋葡聚糖的低含量和木质纤维素的热解产物中生物催化剂的抑制剂的存在阻碍了热解糖的可发酵利用的问题,需要进一步研究和改进以使该方法可行。

相关结果发表于:

LQ Jiang, Zhen Fang*, ZL Zhao*, AQ Zheng, XB Wang, HB Li, Levoglucosan and Its Hydrolysates via Fast Pyrolysis of Lignocellulose for Microbial Biofuels: A State-of-the-Art Review, Renewable & Sustainable Energy Reviews, 105, 215-229 (2019).

Prof. Fang was appointed as the Member of the National Teaching Steering Committee

Prof. Fang was appointed as the Member of the National Teaching Steering Committee

In Oct. 2018, Prof. Fang was appointed as the Member of the National Teaching Steering Committee for Agricultural Engineering of Higher Learning in Colleges and Universities, Ministry of Education of China (2018-2022), aiming to guide and set rules for undergraduate education.

方老师担任国家教育部高等学校农业工程教学指导委员会委员(2018-2022),并出席在北京中国农大的新一届指委会的成立大会(2018.12.21-23)。

Prof. Fang attended 3 Int’l meetings and gave invited talks in 2018

Prof. Fang attended 3 Int’l meetings and gave invited talks in 2018

In 2018, Prof. Fang gave three invited talks in meetings:
1) Zhen Fang*, Hydrolysis of Lignocellulose for Biofuels and Chemicals, i-BioN 2018, The Symposium on Biorefinery and Bioprocess Topics – Innovative Bio-production of Fuels and Chemicals, 10-13th Nov., 2018, Nanjing, China.
2) Zhen Fang*, Green Production of Biodiesel and Biofuels with Solid- and Nano-catalysts, NoAW & AgroCycle Joint Stakeholders Event, Agricultural waste & residue management for a circular bio-economy: an impacts-oriented Euro-Chinese vision, 22nd and 23rd October 2018, Beijing, China.
3) Zhen Fang*, Green Production of Biofuels and Chemicals from Renewable Resources, US–China EE-FEWS Workshop 2018, 5th Environment-Enhancing Energy (E2-Energy) Forum, June 13 – 15, 2018 Beijing, China.

2018年,方老师出席3个国际会议并应邀在会议上作了三次演讲:
1) 2018国际生物精练与生物工艺研讨会
Zhen Fang*, Hydrolysis of Lignocellulose for Biofuels and Chemicals, i-BioN 2018, The Symposium on Biorefinery and Bioprocess Topics – Innovative Bio-production of Fuels and Chemicals, 10-13th Nov., 2018, Nanjing, China.
2) 2018中欧农业废弃物循环会议
Zhen Fang*, Green Production of Biodiesel and Biofuels with Solid- and Nano-catalysts, NoAW & AgroCycle Joint Stakeholders Event, Agricultural waste & residue management for a circular bio-economy: an impacts-oriented Euro-Chinese vision, 22nd and 23rd October 2018, Beijing, China.
3) 2018中美第五届环境增值能源论坛
Zhen Fang*, Green Production of Biofuels and Chemicals from Renewable Resources, US–China EE-FEWS Workshop 2018, 5th Environment-Enhancing Energy (E2-Energy) Forum, June 13 – 15, 2018 Beijing, China.

Professor Richard L. Smith Jr. from Tohoku University visited our lab

Professor Richard L. Smith Jr. from Tohoku University visited our lab

In the morning of November 27th, 2018, Professor Richard L. Smith Jr. and assistant Professor Haixin Guo from the Supercritical Fluid Center of the Department of Chemical Engineering, Tohoku University (Japan), visited our group. Professor Smith is the editor for Asia-Pacific region of the Journal of Supercritical Fluids (JSF, Elsevier, Chemical Engineering Q1) (Professor Fang is the associate editor of JSF). Professor Smith made an in-depth discussion with Professor Fang on the problems as follows: (i) editorial points and development of JSF (ii) research cooperation and (iii) International Symposium on Aqua Science and Water Resources hosted by Biomass group at Nanjing Agricultural University in 2019 in Nanjing and so on. This discussion will facilitate the development of JSF and attraction of high quality articles. At the same time, some preliminary points for the International Symposium were decided.

In the afternoon, Professor Smith and Dr. Guo visited our Lab, and Professor Fang gave a detailed introduction about the current research directions and research progress of the lab. Moreover, Dr. Hu Li, Dr. Lujiang Xu and Ph.D. students Miss Wenjie Cong and Mr. Song Tang et al. demonstrated how to use the relevant instruments and equipment to Professor Smith. Professor Smith has provided valuable opinions and suggestions for collaboration in supercritical fluid gasification, biodiesel preparation, pyrolysis, microwave synthesis and microbial oils, and had a cordial discussion with the students and faculty members of our Lab. The visit of Professor Smith brought many valuable suggestions that could promote our collaboration, increase our excellence in research and improve our international impact in the field. The teachers and students thank Professor Smith for his presence and valuable advices, and look forward to the next visit of Professor Smith.

日本东北大学Richard L. Smith Jr.教授一行访问生物能源组

2018年11月27日上午,日本东北大学化工系超临界流体中心Richard L. Smith Jr.教授和其助理郭海心助理教授应邀来生物能源组访问和交流。Smith教授为Journal of Supercritical Fluids国际期刊(Elsevier, 化工Q1区)亚太地区主编(方教授为该刊副主编),他就该期刊的编辑要点和发展,课题合作以及由生物能源组主办2019水科学和环境国际会议等问题与方老师进行了深入的交流和讨论。此次讨论交流有利于Journal of Supercritical Fluids的发展和高质量文章的录用,同时还初步商定了水科学和环境国际会议的一些事宜。此外,课题合作不仅能加深两组成员之间的联系与交流,还能扩大课题的研究价值,带来更大的创新性。

27日下午,Smith教授一行在方真教授带领下参观了生物能源实验室,方老师为其详细地介绍了目前实验室相关研究方向和研究进展。生物能源组博士后李虎博士,讲师徐禄江博士,博士生丛文杰小姐和唐松先生等向Smith教授一行演示了相关仪器和设备的使用方法和功能。Smith教授就超临界流体气化、生物柴油制备,热解,微波合成和微生物油脂等研究提出了宝贵的意见和合作建议,并与生物能源组的各位同学展开了亲切地讨论。Smith教授此次拜访交流给生物能源组师生带来了许多宝贵建议。生物能源组各位师生真挚感谢Smith教授的到来和所给予的宝贵建议,并期待Smith教授下次来访。

Springer book “Production of Materials from Sustainable Biomass Resources”

Springer book “Production of Materials from Sustainable Biomass Resources” 

Recently, Springer has published (in press) a book entitled “Production of Materials from Sustainable Biomass Resources” edited by Profs. Zhen Fang, RL Smith Jr. and Dr. XF Tian, Springer, Hardcover ISBN978-981-13-3767-3, 500 pages, 2019 (https://www.springer.com/cn/book/9789811337673) .

Lignocellulosic biomass consists of the biopolymers (cellulose, hemicellulose and lignin) that form a natural structural matrix with structural similarities but uniqueness among its many forms. As one of the most abundant renewable resources, lignocellulosic biomass can be transformed into materials, chemicals and energy with sustainable chemistry and engineering. The substitution of traditional fossil resources by the three major biopolymers as sustainable feedstocks has been extensively investigated for the manufacture of high value-added products including biofuels, commodity chemicals, bio-based functional materials, and heterogeneous catalysts that could be directly applied for promoting the manufacturing processes. Aimed at developing innovative materials and fuels for practical application, this book was conceived for the collection of studies on state-of-art techniques developed specifically for lignocellulose component derivation, and producing functional materials, composite polymers, carbonaceous biocatalysts, and pellets from lignocellulosic biomass with emphasis on sustainable chemistry and engineering. Technological strategies in terms of physical processing or biological conversion of biomass for material production are also included. Each individual chapter was contributed by globally-selected experts or professionals in the field and externally reviewed to provide a broad perspective of applications on the frontier.

This book contains 12 chapters contributed by leading experts in the field. The text is arranged into five key areas:

Part I: Isolation and purification of lignocellulose components (Chapter 1)

Part II: Composite polymers derived from lignin and cellulose (Chapters 2 and 3)

Part III: Functional materials derived from cellulose and lignocelluloses (Chapters 4-8)

Part IV: Biomass pellets as fuels (Chapters 9-11)

Part V: Biosynthesis of polymers from renewable biomass (Chapter 12)

The text should be of interest to professionals in academia and industry who are working in the fields of natural renewable materials, biorefinery of lignocellulose, biofuels and environmental engineering. It can also be used as comprehensive references for university students with backgrounds of chemical engineering, material science and environmental engineering.

This book is the ninth book of the series entitled, “Biofuels and Biorefineries”, (Prof. Zhen Fang is serving as Editor-in-Chief), and the sixteenth English book edited/authored by Prof. Zhen Fang since 2009.

Biofuels and Biorefineries:

http://www.springer.com/series/11687?detailsPage=titles

 斯普林格新书《可持续生物资源生产材料》出版

由方真老师、日本东北大学RL Smith Jr.教授和华南理工大学田霄飞副教授主编的新书《可持续生物资源生产材料》,最近由斯普林格公司出版发行。(精装,500页, ISBN978-981-13-3767-3,2019)(https://www.springer.com/cn/book/9789811337673 )

木质纤维素生物质由生物聚合物组成(三大组分:纤维素、半纤维素和木质素),其组成的天然结构具有一定的相似性但又有其独特性。作为最丰富的可再生资源之一,木质纤维素可通过可持续化学工程转化为材料,化学品和能源。利用这三大主要生物聚合物为原料制备高附加值产品代替传统的化石资源已被广泛研究,包括生产生物燃料、商业化学品、生物基功能材料和能够直接应用促进生成过程的非均相催化剂。为了给实际应用开发新材料和燃料提供指导,本书旨在收集木质纤维素组分衍生物技术发展水平,及木质纤维素利用可持续化学工程生产功能性材料、复合聚合物、碳基生物催化剂和燃料颗粒。本书还包括物理加工生物质原料和生物质原料生物转化的技术策略。本书包含12个章节,每个章节由全球范围内挑选的该领域的专家或教授编写并通过严格的外审,为读者提供前沿应用的广泛视角。

本书分为五个主要部分:

第一部分:木质纤维素成分的分离和纯化(第1章)

第二部分:木质素和纤维素衍生的复合聚合物(第2章和第3章)

第三部分:纤维素和木质纤维素衍生的功能材料(第4-8章)

第四部分:生物质颗粒燃料(第9-11章)

第五部分:生物合成聚合物(第12章)

本书在材料、可再生能源、环境与化学科学、工程、资源开发、生物质加工、生物燃料和化学工业等领域提供了全面的信息。它为从事天然可再生材料、木质纤维素生物精炼、生物燃料和环境工程领域的学术界及工业界的专业人士提供了宝贵的学术资源。它还可以作为具有化学工程、材料科学和环境工程背景的大学生的综合参考文献。

该书是斯普林格系列丛书“生物燃料和生物炼制- Biofuels and Biorefineries”(方真老师担任该丛书总编辑,该丛书章节总下载量已超11万次)出版的第九本专著,也是方真老师自2009年以来,编著出版的第十六部英语专著

生物燃料和生物炼制丛书:

http://www.springer.com/series/11687?detailsPage=titles

Supercritical water gasification (SCWG) of waste cooking oil

Supercritical water gasification (SCWG) of waste cooking oil

Recently, Prof. JA Kozinski group at Waterloo collaborated with Profs. AK Dalai at U Saskatchewan and Zhen FANG studied SCWG of waste cooking oil.

In the work, Dr. S Nanda (U Western Ontario) et al. studied waste cooking oil gasification at variable temperatures (375-675°C), feed concentration (25-40 wt%) and reaction time (15-60 min) to investigate their effects on syngas yield and composition. Maximum yields of hydrogen (5.16 mol/kg) and total gases (10.5 mol/kg) were obtained at optimal temperature, feed concentration and reaction time of 675°C, 25 wt% and 60 min, respectively. At 5 wt% loading, Ru/Al2O3 enhanced hydrogen yield (10.16 mol/kg) through water-gas shift reaction, whereas Ni/Si-Al2O3 improved methane yield (8.15 mol/kg) via methanation reaction. The trend of hydrogen production from catalytic supercritical water gasification of waste cooking oil at 675°C, 25 wt% and 60 min decreased as Ru/Al2O3 > Ni/Si-Al2O3 > K2CO3 > Na2CO3. The results indicate the recycling potential of waste cooking oil for hydrogen production through hydrothermal gasification.

Results were published:

S Nanda, R Rana, H Hunter, Zhen Fang, AK Dalai, JA Kozinski*, Hydrothermal Catalytic Processing of Waste Cooking Oil for Hydrogen-rich Syngas Production, Chemical Engineering Sciencehttps://doi.org/10.1016/j.ces.2018.10.039 (2018).

—————————

超临界水气化(SCWG)废食用油

最近,加拿大滑铁卢大学的JA Kozinski教授研究组与萨斯喀彻温大学AK Dalai教授和方真教授教授合作,研究了超临界水气化废食用油。

S Nanda博士(U Western Ontario)等研究了不同温度(375-675 °C)、物料浓度(25- 40 wt %)和反应时间(15- 60 min)对废食用油气化的影响,研究了它们对合成气产量和组成的影响。在最佳条件下(675 °C, 25 wt %, 60 min)分别获得最大产氢量(5.16 mol/kg)和总气体量(10.5 mol/kg)。在5wt %的催化剂负荷下,Ru/Al2O3通过水煤气变换反应提高了产氢量(10.16 mol/kg),而Ni/Si-Al2O3通过甲烷化反应提高了产氢量(8.15 mol/kg)。在675 °C、25 wt%和60 min时,催化超临界水气化制氢的趋势随着Ru/Al2O3 Ni/Si-Al2O3 > K2CO3 > Na2CO3的趋势下降。结果表明,废弃食用油通过水热气化制氢具有回收利用潜力。

结果发表在:

S Nanda, R Rana, H Hunter, Zhen Fang, AK Dalai, JA Kozinski*, Hydrothermal Catalytic Processing of Waste Cooking Oil for Hydrogen-rich Syngas Production, Chemical Engineering Science, https://doi.org/10.1016/j.ces.2018.10.039 (2018).

Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst

Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst

Carbonaceous acid catalyst with high acid content was synthesized by metal (Zr) ion chelation and sulfonation of sodium carboxymethylcellulose. It catalyzed the esterification of oleic acid, with biodiesel yield > 99% at 40-90 oC (activation energy of 24.7 KJ/mol). (在低温下通过两步法合成的碳基固体酸Zr-SO3H@CMC表面酸度为8.45 mmol/g,可以在40-90 oC催化油酸酯化获得> 99%的生物柴油产率;在90 oC,催化剂循环10次,生物柴油的产率仍> 87%。)

 Recently, Miss Yi-Tong Wang (PhD student from Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences) supervised by Prof. Zhen FANG synthesized carbonaceous catalyst by a two-step method at low temperatures. It had high total acid content (8.45 mmol/g) for oleic acid esterification with high biodiesel yields (> 99%) at 40-90 oC. Under conditions of 90 oC, 20/1 methanol/oleic acid molar ratio, 5 wt% catalyst and 2 h reaction time, biodiesel yield of > 87% was achieved after 10 cycles of use. At lower temperatures (40, 50 and 60 oC), biodiesel yield still reached 82 %, 93 % and 90 % after 3 cycles, respectively. The high activity of Zr-SO3H@CMC benefited from low activation energy of 24.7 KJ/mol. It shows potential application for esterification of free fatty acids or pretreatment of oils with high acid value for the green production of biodiesel
The results were published:
YT Wang, Zhen Fang*, F Zhang, Esterification of Oleic Acid to Biodiesel Catalyzed by a Highly Acidic Carbonaceous Catalyst, Catalysis Today, https://doi.org/10.1016/j.cattod.2018.06.041,  (2018).

碳基固体酸性催化剂酯化油酸制备生物柴油

最近,王一同(女)同学(中国科学院西双版纳热带植物园博士研究生,现华北理工大学教师)在方老师的指导下,通过两步法合成了碳基固体酸性催化剂,并应用于油酸酯化制备生物柴油。该研究通过简易的两步法合成高活性的具有多酸位点的碳基固体酸性催化剂,其酸度为8.45 mmol/g,可以在40-90 oC催化油酸酯化获得> 99%的生物柴油产率。在反应条件:90 oC,20/1的醇油摩尔比,5 wt%的催化剂量和2 h反应时间,催化剂循环10次,生物柴油的产率仍> 87%。在低温40-60 oC,其循环3次,生物柴油的产率分别为82 %, 93 % 和 90 %。催化剂低的活化能(24.7 KJ/mol)决定其高的活性。该催化剂在生物柴油绿色生产(酯化油酸和高酸值油脂预处理)展示非常好的应用前景。

结果发表在Catalysis Today: Yi-Tong Wang, Zhen Fang*, F Zhang,Esterification of Oleic Acid to Biodiesel Catalyzed by a Highly Acidic Carbonaceous Catalyst, Catalysis Today (Q1, IF 4.6), https://doi.org/10.1016/j.cattod.2018.06.041,  (2018).