Dr. LJ Xu and Prof. Zhen Fang attended the 10th National conference on Environmental Chemistry (NCEC 2019)

Dr. LJ Xu and Prof. Zhen Fang attended the 10th National conference on Environmental Chemistry (NCEC 2019)

On August 16-18, 2019, Dr. Xu and Prof. Fang attended the 10th National conference on Environmental Chemistry (NCEC 2019) held in Nankai University, Tianjin invited by Prof. XH Qi. Prof. Fang gave a keynote speech entitled “Hydrolysis of Lignocelluloses for the catalytic production of biofuels and chemicals” to introduce biomass green transformation, hydrolysis, production of biodiesel via catalytic transesterification, catalytic synthesis of bio-chemical and catalytic pyrolysis. Dr. Xu gave an oral speech entitled “Catalytic fast pyrolysis of polyethylene terephthalate to selectively producing Terephthalonitrile and benzenitrile under ammonia atmosphere ”.

2019年8月16-18日,方真教授和徐禄江老师出席了在天津南开大学举行的第十届全国环境化学大会(NCEC 2019),方真教授作了《Hydrolysis of Lignocelluloses for the catalytic production of biofuels and chemicals》的主旨报告,内容包括:生物质绿色转化、水解、催化酯交换制备生物柴油、催化合成化学品和催化热解。徐禄江老师作了《氨气氛围聚催化热解对苯二甲酸乙二醇酯选择性制备对苯二甲腈和苯甲腈》的口头报告。

 

Co-production of phenolic oil and deoxidation catalyst via fast pyrolysis of phenol-formaldehyde resin with Ca(OH)2

Co-production of phenolic oil and deoxidation catalyst via fast pyrolysis of phenol-formaldehyde resin with Ca(OH)2

Recently, Dr. Lujiang Xu and Prof. Zhen FANG have developed a catalytic pyrolysis process for direct conversion of phenol-formaldehyde resin to produce phenolic oil and deoxidation catalyst.

PF resins were used to co-produce phenolic oil and CaO/carbon catalyst by fast pyrolysis with Ca(OH)2 with oil yield of 37% containing 80% phenols (Ca(OH)2催化热解酚醛树脂共生产酚醛油和CaO/炭催化剂,油产率为37%,含80%酚类).

Phenol-formaldehyde (PF) resin was widely used in industry, it would cause an adverse effect on the environment if without applicable treatments of resin wastes. Triglycrides (e.g., soybean oil) were abundant in the nature, but cannot be used directly as engine fuel. The deoxygenation of triglycrides was necessary for producing liquid fuel similar to that derived from petroleum. Herein, PF resin was used to co-produce phenolic-rich oil and CaO/char deoxygenation catalyst by catalytic fast pyrolysis with Ca(OH)2. The CaO/char was used as catalyst to catalytic deoxygenation of soybean oil via catalytic fast pyrolysis process. It was found that Ca(OH)2 changed the thermal decomposition behaviours of PF resin dramatically and promoted the cracking reactions to form more monophenol compounds. The optimal conditions for producing phenol-rich oil (containing 9.1% aromatic hydrocarbons and 82.8% phenols, GC-MS area fraction) with 37.3% yield were 650 °C and 5.0% Ca(OH)2 catalyst. Meanwhile, the total carbon yield of targeted phenols reached 33.7%. Solid residue (char) was further pyrolyzed at 800 °C for producing CaO/char catalyst that helped to reduce the bio-oil oxygen content from 14.4% to 2.4% in the pyrolysis of soybean oil. The peak area % of aromatic hydrocarbons in the oil was 86.8%, and indicated it could be used as gasoline. Phenolic oil from PF resin and aromatic hydrocarbons-rich oil from vegetable oil are easily produced by fast pyrolysis with calcium catalyst.

Related results were published:

LJ Xu, QQ Zhong, Q Dong, LY Zhang, Zhen Fang*, Co-production of phenolic oil and CaO/char deoxidation catalyst via catalytic fast pyrolysis of phenol-formaldehyde resin with Ca(OH)2, Journal of Analytical and Applied Pyrolysis, https://doi.org/10.1016/j.jaap.2019.104663 (2019).

——————————————————————————————

催化热解酚醛树脂共生产酚醛油和CaO/炭催化剂

最近,徐绿江博士和方真教授开发了一种直接转化酚醛树脂生产酚醛油和脱氧催化剂的催化热解工艺。

酚醛树脂在工业上得到了广泛的应用,如果不进行适当的处理,会对环境造成不良影响。甘油三脂(如大豆油)在自然界中含量丰富,但不能直接用作发动机燃料。甘油三脂的脱氧对于生产类似于石油液体燃料是必要的。在此基础上,采用酚醛树脂与Ca(OH)2催化快速热解制备了富酚油和CaO/炭脱氧催化剂。以氧化钙/炭为催化剂,采用催化快速热解法对大豆油进行催化脱氧。结果表明,Ca(OH)2能显著改变酚醛树脂的热分解行为,促进裂解反应形成更多的单酚类化合物。

合成37.3%高酚油(含9.1%芳烃和82.8%苯酚)的最优条件为 650℃和5.0%Ca(OH)2催化剂。同时,目标酚的总碳产率达到33.7%。在800℃下对固体残渣(炭)进行进一步热解,制备出CaO/炭催化剂。该催化剂使豆油热解过程中生物油氧含量由14.4%降至2.4%。油中芳烃的GC-MS峰面积百分比为86.8%,表明它可以作为汽油使用。酚醛树脂制备酚醛油和植物油制备富芳烃油,在钙催化剂的作用下,通过快速热解得以实现。

详情可见:

LJ Xu, QQ Zhong, Q Dong, LY Zhang, Zhen Fang*, Co-production of phenolic oil and CaO/char deoxidation catalyst via catalytic fast pyrolysis of phenol-formaldehyde resin with Ca(OH)2, Journal of Analytical and Applied Pyrolysis, https://doi.org/10.1016/j.jaap.2019.104663 (2019).

Mr. Xiao-jie Wei and Miss Le-yao Zhang successfully defended their theses

Mr. Xiao-jie Wei and Miss Le-yao Zhang successfully defended their theses

On May 29, 2019, Mr. Xiao-jie Wei and Miss Le-yao Zhang supervised by Prof. Zhen Fang with the help of Drs. Lujiang Xu and Xiao Kong, successfully defended their theses in A101 Huixian Building, Pukou Campus of Nanjing Agricultural University. The defending committee was composed of Profs. Yongfu Zhao (chair) and Hongying Huang from Jiangsu Provincial Academy of Agricultural Sciences, Prof. Xiaohua Wang and Associate Professor Kunquan Li from Nanjing Agricultural University.

All the members of the panel listened to the presentations, raised corresponding questions and reviewed the relevant information after hearing the thesis presentations by Mr. Wei and Miss Zhang. After reviewing and defending, the panel agreed that Mr. Wei and Miss Zhang had successfully completed their research and course requirements on agricultural bio-environment and energy engineering. Mr. Wei studied the catalytic condensation of furfural and acetone alcohol to furanic biofuels to optimize technological conditions with La-based trimetallic catalysts with his thesis entitled “Lanthanide complex metal catalysts for furanic biofuels preparation”. Miss Zhang studied the green recycling of polyvinyl chloride (PVC) with her thesis entitled “Study on the preparation of hydrocarbons by catalytic pyrolysis dechlorination of polyvinyl chloride”. She modified PVC plastic with catalyst of calcium hydroxide to catalyze the conversion of PVC to hydrocarbons by fast pyrolysis technology. Both students worked hard and published 2 academic papers. After the jury voted by secret ballot with Grade B, the panel agreed to confer Master of Engineering Degree to Mr. Xiao-jie Wei and Miss Le-yao Zhang.

Both students got a decent job in manufacturing industry as an engineer.

Congratulations!

生物能源组工程硕士生魏孝捷、张乐瑶顺利通过毕业答辩

2019年5月29日,南京农业大学生物能源2017级工程硕士研究生魏孝捷(男)与张乐瑶(女)毕业答辩会在南京农业大学浦口校区汇贤楼A101举行。答辩评审委员会主席由江苏省农业科学院赵永富研究员担任,来自江苏省农科院的赵永富研究员与黄红英研究员,南京农业大学的王效华教授与李坤权副教授共四位专家担任评审委员。

答辩会上,答辩委员会主席及各位评委在听取了魏孝捷与张乐瑶同学在读期间的答辩报告后,进行了充分的问答和审阅相关资料。经过评审决议后,专家组一致认为魏孝捷与张乐瑶同学顺利完成了农业生物环境与能源方面的研究和学习要求。魏孝捷同学在毕业论文《镧系复合金属催化剂催化制备呋喃类生物燃料》中研究了La系三金属催化剂对于催化糠醛丙酮醇缩合制备呋喃类生物燃料,并针对高效的复合金属氧化物的最优工艺条件进行了研究;张乐瑶同学在毕业论文《聚氯乙烯催化热解脱氯制备碳氢化合物的研究》中对聚氯乙烯(PVC)塑料绿色回收进行研究,针对氢氧化钙对PVC进行改性,利用催化热解技术将聚氯乙烯催化为碳氢化合物,报告数据可靠。两位同学在校期间工作努力,共发表学术论文2篇。经评委会无记名投票表决,评定等级为良好,一致同意通过毕业答辩。

祝贺魏孝捷、张乐瑶同学!

Two Springer books were among “top 25% most downloaded eBooks”

Two Springer books edited by Prof. Fang et al. in 2016 and 2017 were  among the top 25% most downloaded eBooks in 2018.

Two Springer books edited by Prof. Fang et al. in 2016 and 2017 were  among the top 25% most downloaded eBooks in 2018.

1.Zhen Fang*, R. L. Smith, Jr., H. Li (Editors), Production of Biofuels and Chemicals with Bifunctional Catalysts, Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, hardcover, 12 Chapters, ISBN 978-981-10-5136-4, 2017. (Among the top 25% most downloaded eBooks in 2018)。

2.Zhen Fang*, R. L. Smith, Jr.(Editors), Production of Biofuels and Chemicals from Lignin, Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, hardcover, ISBN 978-981-10-1964-7, 2016. (Among the top 25% and 50% most downloaded eBooks in 2018 and 2017)。

Other two Springer books were also listed in “the top 25% most downloaded eBooks”:

3.Zhen Fang*, R. L. Smith, Jr., X. Qi (Editors), Production of Platform Chemicals from Sustainable Resources, Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, hardcover, 14 Chapters, ISBN 978-981-10-4171-6, 500 pages, 2017. (Among the top 25% most downloaded eBooks in 2017).

4.Zhen Fang (Editor), Pretreatment Techniques for Biofuels and Biorefineries, Springer-Verlag, Berlin Heidelberg,  ISBN 978-3-642-32734-6, hardcover, 476 pages, 2013. (Among the top 25% most downloaded eBooks in 2013)。


方老师2016和2017年编著的两部Springer专著列入“2018年Springer下载量最高的25%电子书中”。

方老师共有4部专著进入“Springer下载量最高的25%电子书中”:

1.Zhen Fang*, R. L. Smith, Jr., H. Li (Editors), Production of Biofuels and Chemicals with Bifunctional Catalysts, Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, hardcover, 12 Chapters, ISBN 978-981-10-5136-4, 2017.(Among the top 25% most downloaded eBooks in 2018)。

2.Zhen Fang*, R. L. Smith, Jr.(Editors), Production of Biofuels and Chemicals from Lignin, Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, hardcover, ISBN 978-981-10-1964-7, 2016.(Among the top 25% and 50% most downloaded eBooks in 2018 and 2017)。

3.Zhen Fang*, R. L. Smith, Jr., X. Qi (Editors), Production of Platform Chemicals from Sustainable Resources, Springer Book Series – Biofuels and Biorefineries, Springer-Verlag, Heidelberg Berlin, hardcover, 14 Chapters, ISBN 978-981-10-4171-6, 500 pages, 2017. (Among the top 25% most downloaded eBooks in 2017).

4.Zhen Fang (Editor), Pretreatment Techniques for Biofuels and Biorefineries, Springer-Verlag, Berlin Heidelberg,  ISBN 978-3-642-32734-6, hardcover, 476 pages, 2013. (Among the top 25% most downloaded eBooks in 2013)

 

Production of N-containing compounds from plastic wastes by fast pyrolysis

Production of N-containing compounds from plastic wastes by fast pyrolysis

Recently, Dr. Lujiang Xu and Prof. Zhen FANG have developed a catalytic pyrolysis process with ammonia for direct conversion of polyethylene terephthalate (PET) to produce N-containing compounds such as Terephthalonitrile (TPN).

Production of terephthalonitrile from polyethylene terephthalate over γ-Al2O3 based catalysts by fast pyrolysis with ammonia (γ-Al2O3催化快速热解氨化聚对苯二甲酸乙二醇酯PET塑料制备对苯二甲腈)

The optimal condition for producing TPN was over 1 g γ-Al2O3-2wt% catalyst at 500 ºC under carrier gas (50% NH3 and 50% N2) with yield of nitriles and TPN of 58.1 and 52.3 C%, respectively. The selectivity of TPN in the nitriles was around 90%. Meanwhile, a bit of aromatics, benzonitrile, acetonitrile were also produced as by-products with the total yields of less than 3 C%. The catalyst deactivated slightly after 5 cycles. Possible reaction routes were proposed and it was found that terephthalic acid, benzoic acid, related esters and amides were the major intermediates from PET to nitriles. Acetonitrile could be produced from acetaldehyde and its corresponding imines. In addition, 32.1 C% TPN with high purity (> 95%) was obtained via freezing recrystallization.

The carboxyl group in PET plastic was efficiently utilized for the production of terephthalonitrile and benzonitrile by controlling Ca(OH)2/γ-Al2O3 catalysts and pyrolysis parameters (e.g. temperature, residence time, ammonia content). The best conditions are selected as 2% Ca(OH)2/γ-Al2O3 (0.8 g), 500 ºC under pure ammonia with 58.3 C% terephthalonitrile yield and 92.3% selectivity in nitriles. In addition, 4% Ca(OH)2/ Al2O3 was suitable for producing benzonitrile. With catalyst dosage of 1.2 g, residence time of 1.87 s, pyrolysis temperature of 650 ºC and pure ammonia (160 mL/min carrier gas flow rate), the yield and selectivity of benzonitrile were 30.4 C% and 82.6%, respectively.

Related results were published:

  1. LJ Xu, XW Na, LY Zhang,  Q Dong, GH Dong, YT Wang, Zhen Fang*, Selective Production of Terephthalonitrile and Benzonitrile via Pyrolysis of Polyethylene Terephthalate (PET) with Ammonia Over Ca(OH)2/Al2O3 Catalysts, Catalysts, 9, 436; doi:10.3390/catal9050436  (2019).
  2. LJ Xu, LY Zhang, H Song, Q Dong, GH Dong, X Kong, Zhen Fang*, Catalytic Fast Pyrolysis of Polyethylene Terephthalate Waste Plastic for the Selective Production of Terephthalonitrile under Ammonia Atmosphere, Waste Management, 92, 97–106 (2019).

——————————————————————————————

利用塑料废弃物快速热解制备含氮化合物

最近,徐禄江博士和方真教授开发了一种氨催化热解法,将聚对苯二甲酸乙二醇酯(PET)塑料直接转化为对苯二甲腈(TPN)等含氮化合物。

在载气(50%NH3和50%N2)和温度500 ℃下,制备TPN的最佳条件为1 g γ-Al2O3-2wt%催化剂,腈类化合物和TPN的收率分别为58.1%和52.3%。TPN在腈类中的选择性约为90%。同时,还生产了少量芳烃、苯甲腈、乙腈等副产品,总收率小于3%。经过5个循环后,催化剂略微失活。作者提出了可能的反应路线,发现对苯二甲酸、苯甲酸、相关酯和酰胺是从PET到腈的主要中间体。乙醛及其亚胺可制得乙腈。此外,通过冷冻再结晶得到了32.1%的高纯度TPN(>95%)。

作者进一步通过控制Ca(OH)2/γ-Al2O3催化剂和热分解参数(如温度、停留时间、氨含量),有效利用PET塑料中的羧基来生产对苯二甲酸和苯甲腈。选择2%Ca(OH)2/γ-Al2O3(0.8 g),纯氨500 ℃为最佳条件,对苯二甲酸收率58.3C%,腈选择性92.3%。另外,4%的Ca(OH)2/Al2O3也适用于苯甲腈的生产。催化剂用量1.2 g,停留时间1.87 s,裂解温度650 ℃,纯氨(160 mL/min载气流量),苯甲腈的收率和选择性分别为30.4c%和82.6%。

详情可见:

  1. LJ Xu, XW Na, LY Zhang,  Q Dong, GH Dong, YT Wang, Zhen Fang*, Selective Production of Terephthalonitrile and Benzonitrile via Pyrolysis of Polyethylene Terephthalate (PET) with Ammonia Over Ca(OH)2/Al2O3 Catalysts, Catalysts, 9, 436; doi:10.3390/catal9050436  (2019).
  2. LJ Xu, LY Zhang, H Song, Q Dong, GH Dong, X Kong, Zhen Fang*, Catalytic Fast Pyrolysis of Polyethylene Terephthalate Waste Plastic for the Selective Production of Terephthalonitrile under Ammonia Atmosphere, Waste Management, 92, 97–106 (2019).

Prof. Fang attended the 17 European Meeting in Supercritical Fluids and gave keynote speech

Prof. Fang attended the 17 European Meeting in Supercritical Fluids and gave keynote speech

On April 8-11, 2019, Prof. Zhen FANG attended the 17th European Meeting in Supercritical Fluids (ESSF2019) and 7th European Meeting on High Pressure Technology in Ciudad Real (Spain)(https://eventos.uclm.es/16387/detail/17-thsubindice-isasf-congress.html). He gave a keynote speech entitled “Hydrothermal Conversion of Renewable Resources and Wastes to Fuels” to introduce properties of hydrothermal water, conversion of biomass, hydrolysis, SCWO, recycling of plastics and particle synthesis. He also chaired a section and helped to evaluate the best posters  as the member of the selection committee for the CFS Jerry King Poster Award.

European Meeting in Supercritical Fluids (ESSF) is a biannual conference, supported by a number of universities and companies all around Europe, with a strong participation and implantation in the scientific community worldwide. The meeting are an exciting and informative with high quality programs including plenary/keynote lectures, invited talks, forums in a variety of topics, oral and poster presentations and many other social programs for over 250 participants from all around the world.

On April 7, before the meeting, Prof. Fang (as associate editor of Journal of Supercritical Fluids) also attended editorial meeting presided over by Prof. Erdogan Kiran, Editor-in Chief to discuss the issues related to the Journal such as virtual special Issues, manuscript processing software and manuscript review.

方老师出席17届欧洲超临界流体会议并发表主旨演讲

201948日至11,方真教授,出席了在西班牙雷阿尔城举行的第17届欧洲超临界流体会议(ESSF2019)和第7届欧洲高压技术会议(https://eventos.uclm.es/16387/detail/17-thsubindice-isasf-congress.html),并做了主旨发言。演讲题目为《水热转化可再生资源和废弃物为燃料》,内容包括:水热性质、生物质转化、水解、超临界水氧化、塑料回收和颗粒合成。此外,他亦担任一个分会的主席,并作为“杰里.金墙报奖”评选委员会成员,协助评审最佳墙报。

欧洲超临界流体会议是一个两年一次的会议,由许多欧洲各地的大学和公司参与和支持,拥有全球超临界流体和高压科技社区强大的参与和植入。日程包括全体会议/主题演讲,邀请讲座,各种主题的论坛,口头和海报。来自世界各地的250多名代表参与了演讲、讨论和许多其他社交活动。

另外,47日,会议开始前,方老师(作为超临界流体杂志副主编)也出席了刊物主编Erdogan Kiran教授主持的编辑委员会会议,讨论了该期刊有关的专题、稿件处理软件、稿件评审等问题。

Complete recovery of cellulose from rice straw pretreated with EG-AlCl3 for enzymatic hydrolysis

Complete recovery of cellulose from rice straw pretreated with EG-AlCl3 for enzymatic hydrolysis

Ethylene glycol (EG) and AlCl3 pretreated rice straw at 150 °C with 0.055 mol/L AlCl3 for 0.5 h, resulting in 100% cellulose recovery with 88% lignin and 90% hemicellulose removal for a remarkable glucose yield of 94% after 24 h enzymatic hydrolysis. (在150 °C和0.055 mol/L AlCl3条件下,水稻秸秆经乙二醇-水预处理0.5 h后,保留100%的纤维素,并去除88%的木质素和90%的半纤维素;10 FPU/g和5%基质浓度条件下,酶水解24 h后,预处理后水稻秸秆的酶解率达到94%。)

Recently, PhD student Mr. Song Tang supervised by Prof. Zhen FANG developed a novel ethylene glycol (EG) and aluminum chloride pretreatment for lignocellulosic biomass. EG-AlCl3 pretreatment had an extremely good selectivity for component fractionation, resulting in 88% delignification and 90% hemicellulose removal, with 100% cellulose recovered or 76% (w/w) cellulose content in solid residue at 150 °C with 0.055 mol/L AlCl3. The pretreated residue (5%, w/v) presented a higher enzymatic hydrolysis rate (glucose yield increased 2 times to 94%) for 24 h at cellulase loading of 10 FPU/g. The hydrolysis behavior was correlated with the composition and structure of substrates characterized by SEM, FT-IR, BET, XRD and TGA. The enzyme adsorption ability of pretreated straw was 12-folds that for the original sample. EG-AlCl3 solution was further cycled for 3 times with 100% cellulose recovery but only 29% lignin removal due to the loss of AlCl3.
The results were published:
S Tang, Q Dong, Zhen Fang*, ZD Miao, Complete Recovery of Cellulose from Rice Straw Pretreated with Ethylene Glycol and Aluminum Chloride for Enzymatic Hydrolysis, Bioresource Technology, 284, 98–104(2019). https://doi.org/10.1016/j.biortech.2019.03.100.
————————————-
乙二醇和氯化铝预处理水稻秸秆完全回收纤维素以用于酶水解

最近,博士生唐松(男)同学在方老师的指导下,开发出一种新型的应用于木质纤维素生物质的乙二醇-氯化铝预处理技术,其对木质纤维素组分分离具有极好的选择性。在150 °C和0.055 mol/L AlCl3条件下,水稻秸秆中纤维素被100%保留,88%的木质素和90%的半纤维素被去除。同时,固体残渣中纤维素含量达到76%,且在10 FPU/g和5%基质浓度条件下,酶水解24 h后,酶解率较原始水稻秸秆提高2倍,达到了94%。通过SEM、FT-IR、BET、XRD和TGA等技术手段表征了水稻秸秆的组成结构和其可酶水解能力的关系。水稻秸秆经预处理后,对纤维素酶的吸附能力提高了11倍。此外,乙二醇-氯化铝溶液用于水稻秸秆循环处理3次,均保持100%纤维素回收率,但由于循环处理期间AlCl3的损失,木质素脱除率降至29%。

结果发表在Bioresource Technology: S Tang, Q Dong, Zhen Fang*, ZD Miao, Complete Recovery of Cellulose from Rice Straw Pretreated with Ethylene Glycol and Aluminum Chloride for Enzymatic Hydrolysis, Bioresource Technology, 284, 98–104 (2019). https://doi.org/10.1016/j.biortech.2019.03.100 (Q1, IF 5.8).

A paper was published in Nature Communications

N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks

Recently, Dr. H Li and Prof. Zhen Fang, collaborated with Profs. M Watanabe & RL Smith Jr (Tohoku University, Japan) and Prof. EJM Hensen (Eindhoven University of Technology, The Netherlands), published a paper in Nature Communications about amination of biomass-derived feedstocks.

Nitrogen-containing compounds, especially primary amines, are vital building blocks in nature and industry. Herein, a protocol is developed that shows in situ formed N-formyl quasi-catalytic species afford highly selective synthesis of formamides or amines with controllable levels from a variety of aldehyde- and ketone-derived platform chemical substrates (that can be easily produced via our patented “fast hydrolysis” process from lignocelluloses and subsequent catalytic conversions) under solvent-free conditions. Up to 99% yields of mono-substituted formamides are obtained in 3 min. The C-N bond formation and N-formyl species are prevalent in the cascade reaction sequence. Kinetic and isotope labeling experiments explicitly demonstrate that the C-N bond is activated for subsequent hydrogenation, in which formic acid acts as acid catalyst, hydrogen donor and as N-formyl species source that stabilize amine intermediates elucidated with density functional theory. The protocol provides access to imides from aldehydes, ketones, carboxylic acids, and mixed-substrates, requires no special catalysts, solvents or techniques and provides new avenues for amination chemistry.

Related results were published:

H Li, HX Guo, YQ Su, Y Hiraga, Zhen Fang*, EJM Hensen, M Watanabe* & RL Smith Jr*, N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks, Nature Communications, 10, Article number: 699 (2019), https://doi.org/10.1038/s41467-019-08577-4.

Behind the paper:

https://chemistrycommunity.nature.com/channels/1465-behind-the-paper/posts/44026-n-formyl-stabilizing-quasi-catalytic-species

———————————–

N-甲酰基稳定准催化物种促进生物质原料快速、选择性地无溶剂氨化生物质原料

最近,李虎博士和方真教授,与日本和荷兰科学家合作(日本东北大学RL Smith Jr教授和荷兰埃因霍温科技大学EJM Hensen教授研究组)合作,在《自然通讯》期刊上发表了一篇有关于氨基化生物质原料的文章。

含氮化合物, 特别是初级胺, 是自然界和工业原料的重要组成部分。本文中,开发了一种方案,其显示原位形成的N-甲酰基,准催化物质在无溶剂条件下从各种醛和酮衍生的平台化学底物(这可以很容易地通过我们的“快速水解”专利技术, 从木质纤维素水解和随后的催化转化获得)提供具有可控水平的甲酰胺或胺的高度选择性合成。该方案在3分钟内可获得高达99%的单取代甲酰胺产率。级联反应序列中普遍存在形成的C-N键和N-甲酰类化合物。动力学和同位素标记实验明确证明C-N键被活化用于随后的氢化,其中甲酸充当酸催化剂,氢供体和N-甲酰基物质源稳定胺中间体,已被密度泛函理论阐明。该方案提供了从醛、酮、羧酸和混合基质获得酰亚胺的途径,不需要特殊的催化剂、溶剂或技术,并为胺化化学提供了新的途径。

研究背景

(1)初步思考

2017年,我们(方真教授、RL Smith Jr教授、李虎博士)提交了中国南京农业大学和日本东北大学之间关于生物质生产高附加化学品的合作计划,李虎博士将在东北大学进行为期两年的博士后研究。在准备该计划时,我们撰写了一份关于生物质的综述(双功能固体催化材料:https://doi.org/10.1016/j.pecs.2016.04.004)并出版了一本关于双功能催化剂的书(双功能催化剂生产生物燃料和化学品,www.springer.com/gp/book/9789811051364)。在这些调查中,我们得出结论,生物质衍生原料的胺化将是一个很好的研究课题,但它需要我们开发高度复杂的催化反应系统,处理氢气或氨,并仔细优化给定原料的反应条件。例如,含有一个以上官能团的生物质衍生平台化学品(例如呋喃醛,如糠醛)的胺化不易用经典或非催化方法合成,因为呋喃环易于打开形成无规氨基物种。因此,需要一种新的方法,最终引导我们发现一些非常重要的化学反应。

(2)出乎意料的结果

我们的研究小组通过在流动条件下快速加热和混合原料来研究生物质的快速水解和材料生产(http://biomass-group.njau.edu.cn/info/1016/1256.htm)。我们想象如果我们能够将原料快速加热到反应条件,那么就有可能提高胺化的选择性。在小规模的微波加热对于原料(糠醛,甲酸铵,甲酰胺,甲酸)的快速加热是有益处的,幸运的是,我们小组有一个微波反应专家,他有一个合适的实验装置来测试这个想法。即使通过快速加热,我们也预估我们必须设计某种新型稳定的双功能催化剂来选择性地胺化糠醛。然而,当进行微波加热实验和分析时,揭示了非常意外的结果。值得注意的是,使用不同比例的甲酸和甲酰胺的快速加热速率的实验给出了选择性的胺化,其可以在没有多相催化剂的情况下在几分钟的反应时间内控制反应!

图1 使用快速加热和甲酰胺与甲酸选择性胺化平台化学品以产生N-甲酰基物质。R1和R2可含有官能团。通过用甲醇处理相应的酰胺获得伯胺、仲胺或叔胺。

这里,甲酸不仅作为H-供体,而且作为产生N-甲酰基物质的酸催化剂,其导致C-N键活化和稳定胺化中间体。

(3)机理

图2(顶部)显示了方案中糠醛的胺化和N-甲酰基稳定催化物质。从原位形成的N-甲酰亚胺或碳酰胺中间体可快速产生可检测量的偕二胺,FDFAM。为了在理论上研究该机制,我们增加了来自你荷兰埃因霍温科技大学的两名合作者,他们进行了DFT计算(图2,底部)。FDFAM中间体是高度稳定的,可以在微波和油浴加热实验中进行证实。

图2 使用甲酰胺(AM)与甲酸(FA)将糠醛(FUR)胺化为1,展示N-甲酰基稳定的准催化物质(顶部)和DFT计算,展示具有较低能量的中间体二胺(FDFAM)的途径(底部)。

(4)广泛的使用范围

该方案广泛适用于生物质衍生的二氧化碳和N-甲酰亚胺的合成,用于由醛,酮,羧酸或它们的混合物生产组合化合物,无聚合物单体或杂环化合物,如反应所示(S1)-(S6)(图3)。

图3 将方案扩展到其他条件,显示使用范围的广泛性(S1-S6)

(5)新途径

该方案适用于流动化学研究,具有扩大规模的巨大潜力。此外,多相催化的使用可能用于增强本研究的各个方面或开发新的方案。

(6)总结

总而言之,无论是在研究方面,还是与才华横溢的国际成员合作,以及与自然的工作人员,编辑和审稿人合作,热情地帮助我们实现化学的潜力,这都是一段美妙的旅程。有关完整评论者的评论和作者回复,请参https://rdcu.be/bma7w 和支持材料。有关详细信息,请参阅我们的论文:

H Li, HX Guo, YQ Su, Y Hiraga, Zhen Fang*, EJM Hensen, M Watanabe* & RL Smith Jr*, N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks, Nature Communications, 10, Article number: 699 (2019), https://doi.org/10.1038/s41467-019-08577-4.

A paper was published in Renewable & Sustainable Energy Reviews

Levoglucosan and Its Hydrolysates via Fast Pyrolysis of Lignocellulose for Microbial Biofuels.

Recently, Dr. LQ Jiang (Guangzhou Institute of Energy Conversion, CAS) and Prof. Zhen Fang, collaborated with Prof.  ZL Zhao (Guangzhou Institute of Energy Conversion), published a review paper in Renewable & Sustainable Energy Reviews about Fast Pyrolysis for Microbial Biofuels. Fast pyrolysis, which is comparable with the enzyme or acid hydrolysis, should be considered for further development for fermentable levoglucosan (LG) production. This manuscript offers a broad review of the current status and future research perspectives of LG and its hydrolysates production from lignocellulosic biomass by fast pyrolysis for fermentation. The utilization, distribution and formation paths of LG from cellulose are presented.In consideration of the complexity of cellulose structure and lignocellulosic components, the influence of the major individual components (cellulose, hemicellulose, lignin and ash) and the structural properties (particle size,degree of polymerization and crystallinity) on the LG formation are reviewed. Aiming to further improve the yield of LG and the fermentability of pyrolysate, a number of pretreatment methods (e.g. hot-water pretreatment,acid pretreatment, acid impregnation) prior to fast pyrolysis, hydrolysis of LG and detoxification before fermentation, and microbial production of valuable products are also discussed in detail. At last, a brief conclusion for the challenge in this topic is provided. The low content of LG and the presentence of inhibitors to biocatalysts in the pyrolysate of lignocelluloses hamper the fermentable utilization of pyrolytic sugars, which need further investigation and improvement to make this process feasible.

Related results were published:

LQ Jiang, Zhen Fang*, ZL Zhao*, AQ Zheng, XB Wang, HB Li, Levoglucosan and Its Hydrolysates via Fast Pyrolysis of Lignocellulose for Microbial Biofuels: A State-of-the-Art Review, Renewable & Sustainable Energy Reviews, 105, 215-229 (2019).

Microbial Biofuels and Chemicals Production via Fast Pyrolysis Routes (

通过快速热解途径生产微生物生物燃料和化学品)

———————————————————————-

快速热解木质纤维素生产左旋葡聚糖及其水解产物

最近,蒋丽群博士(中科院广州能源研究所副研究员)为第一作者,方真教授和Zhao ZL研究员(广州能源研究所)共同通讯作者,在期刊《Renewable & Sustainable Energy Reviews》(IF9.2)上发表了一篇有关于快速热解和发酵生产微生物生物燃料的综述。快速热解,相比较与酶解和酸水解,应考虑热解产物左旋葡聚糖(LG)用于可发酵生产的进一步开发。本论文以广泛的视角对于木质纤维素生物质快速热解,进一步发酵生产左旋葡聚糖及其水解产物的现状和未来研究前景进行了探讨。纤维素的热解产物左旋葡聚糖的应用、分布和形成途径将被说明。考虑到纤维素结构和木质纤维素组分的复杂性,综述了主要组分(纤维素,半纤维素,木质素和灰分)对左旋葡聚糖热解形成的结构性质(粒度,聚合度和结晶度)的影响。为了进一步提高左旋葡聚糖的产量和热解产物的发酵能力,快速热解前会有一些预处理方法(如热水预处理,酸预处理,酸浸渍),左旋葡聚糖水解和发酵前的解毒,以及微生物生产的有价值产品也会详细讨论。最后,提出了关于这个主题挑战的简要结论。左旋葡聚糖的低含量和木质纤维素的热解产物中生物催化剂的抑制剂的存在阻碍了热解糖的可发酵利用的问题,需要进一步研究和改进以使该方法可行。

相关结果发表于:

LQ Jiang, Zhen Fang*, ZL Zhao*, AQ Zheng, XB Wang, HB Li, Levoglucosan and Its Hydrolysates via Fast Pyrolysis of Lignocellulose for Microbial Biofuels: A State-of-the-Art Review, Renewable & Sustainable Energy Reviews, 105, 215-229 (2019).

Prof. Fang was appointed as the Member of the National Teaching Steering Committee

Prof. Fang was appointed as the Member of the National Teaching Steering Committee

In Oct. 2018, Prof. Fang was appointed as the Member of the National Teaching Steering Committee for Agricultural Engineering of Higher Learning in Colleges and Universities, Ministry of Education of China (2018-2022), aiming to guide and set rules for undergraduate education.

方老师担任国家教育部高等学校农业工程教学指导委员会委员(2018-2022),并出席在北京中国农大的新一届指委会的成立大会(2018.12.21-23)。