Archive for 4 月, 2022

热解制备左旋葡聚糖High Yield Production of Levoglucosan via Catalytic Pyrolysis of Cellulose at Low Temperature

星期日, 24 4 月, 2022

High Yield Production of Levoglucosan via Catalytic Pyrolysis of Cellulose at Low Temperature

Recently, Dr Li-Qun Jiang (Associate Prof., Institute of Biological and Medical Engineering, Guangdong Academy of Sciences), Prof. H Li (Guizhou University) and Prof. Zhen Fang published an article in Fuel about levoglucosan production from catalytic pyrolysis of cellulose with acid-base bifunctional magnetic Zn-Fe-C catalysts.

Catalytic pyrolysis of cellulose to levoglucosan in improved yields was achieved with acid-base bifunctional magnetic Zn-Fe-C catalysts. Among tested catalysts, Zn4@Fe-C500 could not only increase levoglucosan yield by 5.4 times compared with non-catalytic cellulose pyrolysis at 300 °C, but also help lower reaction temperature by 200 °C due to acid-base site synergistic effect. Furthermore, the levoglucosan yield (80.1 wt%) from catalytic cellulose pyrolysis at 300 °C was much higher than that commonly conducted at 500 °C without catalyst (60.1 wt%). Thermogravimetric and kinetic analysis disclosed levoglucosan formation mechanism. Importantly, Zn4@Fe-C500 catalyst was highly recyclable with little deactivation after 5 consecutive cycles. This study exhibited great potential for industrial levoglucosan production from cellulose at low temperatures. Related results were published in Fuel:

LQ Jiang, JC Luo, F Xu, L Qian, YT Wang, H Li*, Zhen Fang*, High Yield Production of Levoglucosan via Catalytic Pyrolysis of Cellulose at Low Temperature, Fuel, 323 (2022) 124369. https://doi.org/10.1016/j.fuel.2022.124369

.

Production of Levoglucosan via Catalytic Pyrolysis of Cellulose at Low Temperature with Znn@Fe-CT acid-base bifunctional magnetic catalyst磁性固体酸碱两性催化剂Znn@Fe-CT催化纤维素定向热解制备左旋葡聚糖


 磁性固体酸碱两性催化剂Znn@Fe-CT催化纤维素定向热解制备左旋葡聚糖

最近,蒋丽群博士(广东省科学院生物与医学工程研究所副教授), 李虎教授 (贵州大学)和方真教授在国际学术期刊Fuel(IF: 6.609,Q1)发表题为“High Yield Production of Levoglucosan via Catalytic Pyrolysis of Cellulose at Low Temperature”的研究性论文。该研究制备了磁性固体酸碱两性催化剂Znn@Fe-CT用于催化纤维素快速热解选择性制取左旋葡聚糖。相关研究表明,Zn4@Fe-C500催化热解纤维素不仅可以将热解糖化反应温度从500 ℃降低至300 ℃,并且300 ℃下催化热解纤维素得到左旋葡聚糖的产率(80.1 wt%)远高于500℃(60.1 wt%)。经过5次循环实验后Zn4@Fe-C500仍然可以提升左旋葡聚糖的产率。该研究为纤维素定向热解转化提供了新思路。详情可见:

LQ Jiang, JC Luo, F Xu, L Qian, YT Wang, H Li*, Zhen Fang*, High Yield Production of Levoglucosan via Catalytic Pyrolysis of Cellulose at Low Temperature, Fuel, 323 (2022) 124369. https://doi.org/10.1016/j.fuel.2022.124369

.

星期日, 10 4 月, 2022

NaFeO2-Fe3O4合成生物柴油Highly stable NaFeO2-Fe3O4 composite catalyst from blast furnace dust for efficient production of biodiesel at low temperature

Recently, Dr Yi-Tong Wang (Associate Prof., College of Metallurgy and Energy, North China University of Science and Technology) and Prof. Zhen Fang published an article in Industrial Crops & Products about using highly stable NaFeO2-Fe3O4 composite catalyst from blast furnace dust for biodiesel production.

Highly stable catalysts were prepared by wet impregnation of blast furnace dust (BFD) in Na2CO3·H2O, Na2CO3·10H2O, NaHCO3 and Na2CrO4 solution and subsequent calcination of 300-600 oC. At low temperature of 65 oC for 2 h with methanol/oil molar ratio of 15/1, high biodiesel yields of 100 wt% were obtained with 7wt% Na2CO3·H2O@BFD300 and Na2CO3·H2O@BFD400 catalyst (impregnating with Na2CO3·H2O solution and calcining at 300 and 400 oC) added for the first use. Na2CO3·H2O@BFD300 catalyst exhibited outstanding stability and recyclability with biodiesel yields of 100 wt% at the fifth use (93 wt% at the twelfth use) owing to impregnated Na2CO3 reacting with Fe2O3 in dust to produce stable and active nanocomponents of NaFeO2 (32.42 nm) and magnetic nanocomponent of Fe3O4 (size of 3.14 nm and Ms of 6.16 Am2/kg) in dust existing. The study provided practical guidance for biodiesel industrial production.

Related results were published in Industrial Crops & Products:

XM Wang, YN Zeng, LQ Jiang, YT Wang*, JG Li*, LL Kang, R Ji, D Gao, FP Wang, Q Yu, YJ Wang, Zhen Fang*. Highly stable NaFeO2-Fe3O4 Composite Catalyst from Blast Furnace Dust for Efficient Production of Biodiesel at Low Temperature, Industrial Crops and Products, 182, 114937, https://doi.org/10.1016/j.indcrop.2022.114937 (2022).

Efficient production of biodiesel can be achieved with Na2CO3·H2O@BFD300 catalyst for 12 reuses with 92.56 wt% yield.使用Na2CO3·H2O@BFD300催化剂实现生物柴油高效生产,循环12次后,产率仍可达92.56 wt%。


王一同博士和方真教授在国际学术期刊Industrial Crops & Products发表学术论文:

高炉粉尘制备NaFeO2-Fe3O4复合催化剂用于生物柴油合成

最近,王一同博士(华北理工大学冶金与能源学院副教授)和方真教授在国际学术期刊Industrial Crops & Products(IF: 5.645,Q1)发表题为“高炉粉尘制备NaFeO2-Fe3O4复合催化剂用于生物柴油合成”的研究性论文。

利用Na2CO3·H2O,Na2CO3·10H2O,NaHCO3和Na2CrO4水溶液分别湿法浸渍高炉粉尘,于300-600 oC高温活化制备高稳定性催化剂。在65 oC、醇油摩尔比15/1、催化剂用量7 wt%的条件下反应2 h,Na2CO3·H2O@BFD300和Na2CO3·H2O@BFD400催化剂获得了100 wt%的产率。由于浸渍的Na2CO3和高炉粉尘中的Fe2O3反应生成稳定且有活性的纳米组分NaFeO2(32.42 nm)以及高炉粉尘中含有的磁性纳米组分Fe3O4(晶粒:3.14 nm;磁性:6.16 Am2/kg),Na2CO3·H2O@BFD300催化剂表现出优异的稳定性和可回收性,循环12次后仍可获得93 wt%的产率。该研究为生物柴油的工业化生产提供了实用指导。详情可见:

XM Wang, YN Zeng, LQ Jiang, YT Wang*, JG Li*, LL Kang, R Ji, D Gao, FP Wang, Q Yu, YJ Wang, Zhen Fang*. Highly stable NaFeO2-Fe3O4 Composite Catalyst from Blast Furnace Dust for Efficient Production of Biodiesel at Low Temperature, Industrial Crops and Products (IF 5.6), 182, 114937, https://doi.org/10.1016/j.indcrop.2022.114937 (2022).

双功能Na-Fe-Ca催化剂生物柴油Production of biodiesel at low temperature using bifunctional Na-Fe-Ca nanocatalyst from blast furnace waste

星期日, 10 4 月, 2022

Production of biodiesel at low temperature using bifunctional Na-Fe-Ca nanocatalyst from blast furnace waste

Recently, Dr Yi-Tong Wang (Associate Prof., College of Metallurgy and Energy, North China University of Science and Technology) and Prof. Zhen Fang published an article in Fuel about using highly active bifunctional Na-Fe-Ca nanocatalyst from blast furnace dust for biodiesel production.

Nanocatalysts for biodiesel production were prepared via wet impregnation of blast furnace dust (BFD) in Na2CO3 (Na-BFD) and CaCO3 (Ca-BFD) suspension solutions and calcination at 500 and 600 oC, respectively. Biodiesel yields of 100.0 wt% (Na-BFD500) and 98.3 wt% (Ca-BFD600) were achieved at 65 oC. Synthesized catalysts showed outstanding activity and recyclability, due to the transition of CaCO3, Na2CO3 and Fe2O3 to nanocrystals of NaFeO2 (29.9 nm), Ca2Fe2O5 (10.5 nm), CaO (100.1 nm) and Ca2Fe2O5 (50.0 nm). Na-BFD500 achieved 95.8 wt% biodiesel yield with 16 cycles, whereas Ca-BFD600 reached 94.1 wt% biodiesel yield with 7 cycles via magnetic separation. BFD containing convertible magnetic and active components (Fe2O3 and CaCO3) was an ideal raw material to synthesize catalyst for biodiesel production with high catalytic efficiency and easy separation. The study provided a practical utilization of industrial solid waste for biodiesel production.

Related results were published in Fuel:

YT Wang, XM Wang, D Gao, FP Wang, YN Zeng, JG Li*, LQ Jiang, Q Yu, R Ji, LL Kang, YJ Wang, Zhen Fang*, Efficient Production of Biodiesel at Low Temperature Using Highly Active Bifunctional Na-Fe-Ca Nanocatalyst from Blast Furnace Waste, Fuel, 322, 124168, https://doi.org/10.1016/j.fuel.2022.124168 (2022).

Nanocatalysts produced by impregnation and calcination transesterified soybean oil to biodiesel with 100 wt% yield. 通过浸渍和煅烧制备了纳米催化剂用于催化豆油酯交换制备生物柴油,产率高达100 wt%。


高炉粉尘制备双功能Na-Fe-Ca纳米催化剂用于生物柴油合成

最近,王一同博士(华北理工大学冶金与能源学院副教授)和方真教授在国际学术期刊Fuel(IF: 6.609,Q1)发表题为“高炉粉尘制备双功能Na-Fe-Ca纳米催化剂用于生物柴油合成”的研究性论文。

利用Na2CO3和CaCO3水溶液分别湿法浸渍高炉粉尘,于500 ℃和600 oC高温活化制备纳米催化剂(Na-BFD500和Ca-BFD600),用于催化豆油制备生物柴油。催化剂经高温煅烧后,CaCO3、Na2CO3和Fe2O3晶体转变为纳米NaFeO2(29.9 nm)、Ca2Fe2O5(10.5 nm)、CaO(100.1 nm)和Ca2Fe2O5(50 nm)晶体,表现出优异的催化活性和可循环利用特性。Na-BFD500催化豆油制备生物柴油的产率达到100.0 wt%,循环16次后仍可获得95.8 wt%的产率,而Ca-BFD600催化豆油制备生物柴油的产率达到98.3 wt%,循环7次后仍可获得94.1 wt%的产率。该研究为工业固体废物用于生物柴油制备提供了新思路。详情可见:

YT Wang, XM Wang, D Gao, FP Wang, YN Zeng, JG Li*, LQ Jiang, Q Yu, R Ji, LL Kang, YJ Wang, Zhen Fang*, Efficient Production of Biodiesel at Low Temperature Using Highly Active Bifunctional Na-Fe-Ca Nanocatalyst from Blast Furnace Waste, Fuel (IF 6.6), 322, 124168, https://doi.org/10.1016/j.fuel.2022.124168 (2022).